1
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|
2
|
Kozak J, Rabiskova M, Lamprecht A. Muscle Tissue as a Surrogate for In Vitro Drug Release Testing of Parenteral Depot Microspheres. AAPS PharmSciTech 2021; 22:119. [PMID: 33782794 PMCID: PMC8007510 DOI: 10.1208/s12249-021-01965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the importance of drug release testing of parenteral depot formulations, the current in vitro methods still require ameliorations in biorelevance. We have investigated here the use of muscle tissue components to better mimic the intramuscular administration. For convenient handling, muscle tissue was used in form of a freeze-dried powder, and a reproducible process of incorporation of tested microspheres to an assembly of muscle tissue of standardized dimensions was successfully developed. Microspheres were prepared from various grades of poly(lactic-co-glycolic acid) (PLGA) or ethyl cellulose, entrapping flurbiprofen, lidocaine, or risperidone. The deposition of microspheres in the muscle tissue or addition of only isolated lipids into the medium accelerated the release rate of all model drugs from microspheres prepared from ester-terminated PLGA grades and ethyl cellulose, however, not from the acid-terminated PLGA grades. The addition of lipids into the release medium increased the solubility of all model drugs; nonetheless, also interactions of the lipids with the polymer matrix (ad- and absorption) might be responsible for the faster drug release. As the in vivo drug release from implants is also often faster than in simple buffers in vitro, these findings suggest that interactions with the tissue lipids may play an important role in these still unexplained observations.
Collapse
Affiliation(s)
- Jan Kozak
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Miloslava Rabiskova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany.
| |
Collapse
|
3
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Velesiotis C, Vasileiou S, Vynios DH. A guide to hyaluronan and related enzymes in breast cancer: biological significance and diagnostic value. FEBS J 2019; 286:3057-3074. [PMID: 31018038 DOI: 10.1111/febs.14860] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Hyaluronan (HA) is a unique nonsulfated glycosaminoglycan that contributes to breast cancer cells growth and functional properties, including cell migration, invasion, adhesion, as well as tumor-associated angiogenesis in different stages of breast cancer progression and especially metastasis. Latest data show that the levels of HA and/or low molecular mass HA in blood serum and plasma of breast cancer patients may be a useful biomarker for breast cancer prognosis, differential diagnosis, and patients' treatment monitoring. Therefore, the qualitative and quantitative determination of HA in biological samples is an emerging area of research. This review gathers, categorizes, and sums up all the currently used methodologies to analyze HA and HA-related enzymes. The advantages, disadvantages, limitations in use, and the information they provide, are critically considered and discussed. Moreover, emphasis is given to the significance of HA determination in breast cancer, as well as of its related enzymes, for diagnosis and prognosis of this type of cancer.
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Greece
| | - Stella Vasileiou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
5
|
Svirkova A, Turyanskaya A, Perneczky L, Streli C, Marchetti-Deschmann M. Multimodal imaging of undecalcified tissue sections by MALDI MS and μXRF. Analyst 2019; 143:2587-2595. [PMID: 29737333 DOI: 10.1039/c8an00313k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometric imaging (MALDI MSI) is a technique that provides localized information on intact molecules in a sample. Micro X-ray fluorescence (μXRF) imaging allows the examination of the spatial distribution of elements in a sample without any morphological changes. These methods have already been applied separately to different tissues, organs, plants and bacterial films, but, to the best of our knowledge, they have yet to be coupled in a multimodal analysis. In this proof-of-principle study, we established and tested sample preparation strategies, allowing the multimodal analysis of lipids (sphingomyelin and phosphatidylcholines) and elements relevant to bone structures as calcium, phosphorous and sulphur in the very same sample section of a chicken phalanx without tissue decalcification. The results of the investigation of such parameters as adhesive tapes supporting tissue sections, and the sequence of the imaging experiments are presented. We show specific lipid distributions in skin, cartilage, muscle, nail, and the intact morphology of bone by calcium and phosphorus imaging. A combination of molecular and elemental imaging was achieved, thus, providing now for the first time the possibility of gathering MALDI MSI and μXRF information from the very same sample without any washing steps omitting therefore the analytical artifacts that inevitably occur in approaches using consecutive tissue sections. The proposed combination can benefit in research studies regarding bone diseases, osteoporosis, osteoarthritis, cartilage failure, bone/tendon distinguishing, where elemental and lipid interaction play an essential role.
Collapse
Affiliation(s)
- Anastasiya Svirkova
- Institute of Chemical Technology and Analytics (CTA), TU Wien, Vienna, Austria.
| | | | | | | | | |
Collapse
|
6
|
Mass Spectrometry Imaging of Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:155-166. [DOI: 10.1007/978-3-030-04278-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Endres KJ, Hill JA, Lu K, Foster MD, Wesdemiotis C. Surface Layer Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging: A Surface Imaging Technique for the Molecular-Level Analysis of Synthetic Material Surfaces. Anal Chem 2018; 90:13427-13433. [DOI: 10.1021/acs.analchem.8b03238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Rivas D, Zonja B, Eichhorn P, Ginebreda A, Pérez S, Barceló D. Using MALDI-TOF MS imaging and LC-HRMS for the investigation of the degradation of polycaprolactone diol exposed to different wastewater treatments. Anal Bioanal Chem 2017; 409:5401-5411. [DOI: 10.1007/s00216-017-0371-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
9
|
Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:27-33. [PMID: 27213667 DOI: 10.1016/j.scitotenv.2016.05.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 04/14/2023]
Abstract
Degradation of solid polymers in the aquatic environment encompasses a variety of biotic and abiotic processes giving rise to heterogeneous patterns across the surface of the material, which cannot be investigated using conventional Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that only renders an "average" picture of the sample. In that context, MALDI-TOF MS Imaging (MALDI MSI) provides a rapid and efficient tool to study 2D spatial changes occurred in the chemical composition of the polymer surface. Commercial polycaprolactone diol (average molecular weight of 1250Da) was selected as test material because it had been previously known to be amenable to biological degradation. The test oligomer probe was incubated under aerobic and denitrifying conditions using synthetic water and denitrifying mixed liquor obtained from a wastewater treatment plant respectively. After ca. seven days of exposure the mass spectra obtained by MALDI MSI showed the occurrence of chemical modifications in the sample surface. Observed heterogeneity across the probe's surface indicated significant degradation and suggested the contribution of biotic processes. The results were investigated using different image processing tools. Major changes on the oligomer surface were observed when exposed to denitrifying conditions.
Collapse
Affiliation(s)
- Daniel Rivas
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Antoni Ginebreda
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Sandra Pérez
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carmen Quero
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- IDAEA-CSIC, Institute of Environmental Assessment and Water Research, C/Jordi Girona, 18-26, 08034 Barcelona, Spain; ICRA, Catalan Institute for Water Research, Scientific and Technologic Park of the UdG, Emili Grahit, 101-17003 Girona, Spain
| |
Collapse
|
10
|
Fülöp A, Sammour DA, Erich K, von Gerichten J, van Hoogevest P, Sandhoff R, Hopf C. Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry. Sci Rep 2016; 6:33791. [PMID: 27650487 PMCID: PMC5030664 DOI: 10.1038/srep33791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
Phospholipids have excellent biocompatibility and are therefore often used as main components of liposomal drug carriers. In traditional bioanalytics, the in-vivo distribution of liposomal drug carriers is assessed using radiolabeled liposomal constituents. This study presents matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as an alternative, label-free method for ex-vivo molecular imaging of liposomal drug carriers in mouse tissue. To this end, indocyanine green as cargo and two liposomal markers, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with monodisperse polyethylene glycol (PEG36-DSPE) were incorporated into liposomal carriers and administered to mice. We used MALDI MSI of the two lipid markers in both positive and negative ion mode for visualization of liposome integrity and distribution in mouse organs. Additional MSI of hemoglobin in the same tissue slice and pixel-by-pixel computational analysis of co-occurrence of lipid markers and hemoglobin served as indicator of liposome localization either in parenchyma or in blood vessels. Our proof-of-concept study suggests that liposomal components and indocyanine green distributed into all investigated organs.
Collapse
Affiliation(s)
- Annabelle Fülöp
- Center for Applied Research in Applied Biomedical Mass Spectrometry (ABIMAS). Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Denis A Sammour
- Center for Applied Research in Applied Biomedical Mass Spectrometry (ABIMAS). Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Katrin Erich
- Center for Applied Research in Applied Biomedical Mass Spectrometry (ABIMAS). Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Johanna von Gerichten
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter van Hoogevest
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Center for Applied Research in Applied Biomedical Mass Spectrometry (ABIMAS). Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Carsten Hopf
- Center for Applied Research in Applied Biomedical Mass Spectrometry (ABIMAS). Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany.,Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| |
Collapse
|
11
|
Fröhlich SM, Eilenberg M, Svirkova A, Grasl C, Liska R, Bergmeister H, Marchetti-Deschmann M. Mass spectrometric imaging of in vivo protein and lipid adsorption on biodegradable vascular replacement systems. Analyst 2016. [PMID: 26198453 DOI: 10.1039/c5an00921a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases present amongst the highest mortality risks in Western civilization and are frequently caused by arteriosclerotic vessel failure. Coronary artery and peripheral vessel reconstruction necessitates the use of small diameter systems that are mechanically stress-resistant and biocompatible. Expanded polytetrafluorethylene (ePTFE) is amongst the materials used most frequently for non-degradable and bio-degradable vessel reconstruction procedures, with thermoplastic polyurethanes (TPU) representing a promising substitute. The present study describes and compares the biological adsorption and diffusion occurring with both materials following implantation in rat models. Gel electrophoresis and thin-layer chromatography, combined with mass spectrometry and mass spectrometry imaging, were utilized to identify the adsorbed lipids and proteins. The results were compared with the analytes present in native aorta tissue. It was revealed that both polymers were severely affected by biological adsorption after 10 min in vivo. Proteins associated with cell growth and migration were identified, especially on the luminal graft surface, while lipids were found to be located on both the luminal and abluminal surfaces. Lipid adsorption and cholesterol diffusion were found to be correlated with the polymer modifications identified on degradable thermoplastic urethane graft samples, with the latter revealing extensive cholesterol adsorption. The present study demonstrates an interaction between biological matter and both graft materials, and provides insights into polymer changes, in particular, those observed with thermoplastic urethanes already after 10 min in vivo exposure. ePTFE demonstrated minor polymer modifications, whereas several different polymer signals were observed for TPU, all were co-localized with biological signals.
Collapse
Affiliation(s)
- Sophie M Fröhlich
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
12
|
Laska A, Archodoulaki VM, Duscher B. Failure analysis of retrieved PE-UHMW acetabular liners. J Mech Behav Biomed Mater 2016; 61:70-78. [PMID: 26849029 DOI: 10.1016/j.jmbbm.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Ultra-high molecular weight polyethylene (PE-UHMW) acetabular liners have a limited lifespan in a patient's body. There are many factors affecting the performance of the implant and furthermore the properties of the polymeric material are changing after implantation. In this work material changes according to structure and morphology and their implication on mechanical properties are in focus. The physical and mechanical properties of ten crosslinked (xL) PE-UHMW and nine conventional (conv) gamma-sterilized PE-UHMW hip components, used as sliding surface in total hip joint replacement, with different in-vivo times are compared. The evaluation of the retrieved acetabular liners is performed in view of crosslinking and conventional gamma-sterilization but also in terms of the influence of gender concerning alteration in properties. The oxidative degradation in the PE-UHMW is investigated by means of Fourier Transformed Infrared Spectroscopy (FTIR). The characterization of the morphology is carried out via differential scanning calorimetry (DSC). A depth profile of the micro-hardness and elastic modulus is taken over the cross-section of the components in order to find the influence of chemical constitution and morphology on the micro-mechanical properties. It could be shown that crosslinking and oxidative degradation influence the degree of crystallinity of the polymer. Oxidation occurs for both types of the material due to in-vivo time. Higher degree of crystallinity can be correlated to higher hardness and indentation modulus. No unequivocal superiority of crosslinked over conventional liners can be observed. The influence of sex concerning alteration of the evaluated properties matters but need to be further investigated.
Collapse
Affiliation(s)
- Anna Laska
- Institute of Materials Science and Technology, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria; Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland.
| | - Vasiliki-Maria Archodoulaki
- Institute of Materials Science and Technology, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Bernadette Duscher
- Institute of Materials Science and Technology, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
| |
Collapse
|
13
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|