1
|
Fender J, Klöcker J, Boivin-Jahns V, Ravens U, Jahns R, Lorenz K. "Cardiac glycosides"-quo vaditis?-past, present, and future? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9521-9531. [PMID: 39007928 PMCID: PMC11582269 DOI: 10.1007/s00210-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Up to date, digitalis glycosides, also known as "cardiac glycosides", are inhibitors of the Na+/K+-ATPase. They have a long-standing history as drugs used in patients suffering from heart failure and atrial fibrillation despite their well-known narrow therapeutic range and the intensive discussions on their raison d'être for these indications. This article will review the history and key findings in basic and clinical research as well as potentially overseen pros and cons of these drugs.
Collapse
Affiliation(s)
- Julia Fender
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Johanna Klöcker
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Valérie Boivin-Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Elsässer Straße 2Q, 79110, Freiburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biological Materials and Data Würzburg (ibdw), University Hospital Würzburg, Straubmühlweg 2a, 97078, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany.
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany.
| |
Collapse
|
2
|
Transplacental Therapeutic Drug Monitoring in Pregnant Women with Fetal Tachyarrhythmia Using HPLC-MS/MS. Int J Mol Sci 2023; 24:ijms24031848. [PMID: 36768172 PMCID: PMC9916042 DOI: 10.3390/ijms24031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Fetal arrhythmia develops in 0.1-5% of pregnancies and may cause fetal heart failure and fetal hydrops, thus increasing fetal, neonatal, and infant mortality. The timely initiation of transplacental antiarrhythmic therapy (ART) promotes the conversion of fetal tachycardia to sinus rhythm and the regression of the concomitant non-immune fetal hydrops. The optimal treatment regimen search for the fetus with tachyarrhythmia is still of high value. Polymorphisms of these genes determines the individual features of the drug pharmacokinetics. The aim of this study was to study the pharmacokinetics of transplacental anti-arrhythmic drugs in the fetal therapy of arrhythmias using HPLC-MS/MS, as well as to assess the effect of the multidrug-resistance gene ABCB1 3435C > T polymorphism on the efficacy and maternal/fetal complications of digoxin treatment. The predisposition to a decrease in the bioavailability of the digoxin in patients with a homozygous variant of the CC polymorphism showed a probable association with the development of ART side effects. A pronounced decrease in heart rate in women with the 3435TT allele of the ABCB1 gene was found. The homozygous TT variant in the fetus showed a probable association with an earlier response to ART and rhythm disruptions on the digoxin dosage reduction. high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) methods for digoxin and sotalol therapeutic drug monitoring in blood plasma, amniotic fluid, and urine were developed. The digoxin and sotalol concentrations were determined in the plasma blood, urine, and amniotic fluid of 30 pregnant women at four time points (from the beginning of the transplacental antiarrhythmic therapy to delivery) and the plasma cord blood of 30 newborns. A high degree of correlation between the level of digoxin and sotalol in maternal and cord blood was found. The ratio of digoxin and sotalol in cord blood to maternal blood was 0.35 (0.27 and 0.46) and 1.0 (0.97 and 1.07), accordingly. The digoxin concentration in the blood of the fetus at the moment of the first rhythm recovery episode, 0.58 (0.46, 0.8) ng/mL, was below the therapeutic interval. This confirms the almost complete transplacental transfer of sotalol and the significant limitation in the case of digoxin. Previously, ABCB1/P-glycoprotein had been shown to limit fetal exposure to drugs. Further studies (including multicenter ones) to clarify the genetic features of the transplacental pharmacokinetics of antiarrhythmic drugs are needed.
Collapse
|
3
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
4
|
Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines. Se Pu 2022; 40:782-787. [PMID: 36156624 PMCID: PMC9516353 DOI: 10.3724/sp.j.1123.2022.01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
离子淌度质谱(IM-MS)是一种将离子淌度分离与质谱分析相结合的新型分析技术。IM-MS的主要优势不仅是在质谱检测前提供了基于气相离子形状、大小、电荷数等因素的多一维分离,而且能够提供碰撞截面积、漂移时间等质谱信息进而辅助化合物鉴定。近年来,随着IM-MS技术的不断发展,该技术在中药化学成分分析中受到越来越多的关注。首先,IM-MS已成功应用于改善中药复杂成分尤其是同分异构体或等量异位素等成分的分离;其次,IM-MS可通过多重碎裂模式辅助高质量中药小分子质谱信息的获取;此外,IM-MS提供的高维质谱数据信息还可促进中药复杂体系多成分的整合分析。该文在对IM-MS分类和基本原理进行概述的基础上,从分离能力及分离策略、多重碎裂模式、多维质谱数据处理策略3个方面,重点综述了IM-MS在中药化学成分分析中的应用,以期为IM-MS在中药化学成分研究提供参考。
Collapse
|
5
|
Kaszycki JL, Dauly C, Kamleh A. Separation of Isomeric Metabolites and Gangliosides with High Performance (Drift Tube) Ion Mobility–Mass Spectrometry. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.jw1886w1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of metabolites and gangliosides is increasingly important in drug discovery (1) and immunology (2). Accurate analysis of biologically relevant isomers is important because their structure affects their molecular properties. Typically, the isomers are separated using chromatography prior to mass spectrometry (MS) analysis. However, specialized chromatographic methods that distinguish isomers frequently require a complex setup and long runs. Techniques that allow accurate results to be acquired quickly and efficiently would be beneficial.
Collapse
|
6
|
Di Poto C, Tian X, Peng X, Heyman HM, Szesny M, Hess S, Cazares LH. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2072-2080. [PMID: 34107214 DOI: 10.1021/jasms.0c00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of metabolites in biological samples is challenging due to their chemical and structural diversity. Ion mobility spectrometry (IMS) separates ionized molecules based on their mobility in a carrier buffer gas giving information about the ionic shape by measuring the rotationally averaged collision cross-section (CCS) value. This orthogonal descriptor, in combination with the m/z, isotopic pattern distribution, and MS/MS spectrum, has the potential to improve the identification of molecular molecules in complex mixtures. Urine metabolomics can reveal metabolic differences, which arise as a result of a specific disease or in response to therapeutic intervention. It is, however, complicated by the presence of metabolic breakdown products derived from a wide range of lifestyle and diet-related byproducts, many of which are poorly characterized. In this study, we explore the use of trapped ion mobility spectrometry (TIMS) via LC parallel accumulation with serial fragmentation (PASEF) for urine metabolomics. A total of 362 urine metabolites were characterized from 80 urine samples collected from healthy volunteers using untargeted metabolomics employing HILIC and RP chromatography. Additionally, three analytes (Trp, Phe, and Tyr) were selected for targeted quantification. Both the untargeted and targeted data was highly reproducible and reported CCS measurements for identified metabolites were robust in the presence of the urine matrix. A comparison of CCS values among different laboratories was also conducted, showing less than 1.3% ΔCCS values across different platforms. This is the first report of a human urine metabolite database compiled with CCS values experimentally acquired using an LC-PASEF TIMS-qTOF platform.
Collapse
Affiliation(s)
- Cristina Di Poto
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Xiang Tian
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Xuejun Peng
- Bruker Scientific LLC, San Jose, California 95134, United States
| | - Heino M Heyman
- Bruker Scientific LLC, Billerica, Massachusetts 01821, United States
| | | | - Sonja Hess
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| | - Lisa H Cazares
- Dynamic Omics, Antibody Discovery, and Protein Engineering (ADPE), R&D, AstraZeneca, Gaithersburg, Maryland 20850, United States
| |
Collapse
|
7
|
Wu R, Chen X, Wu WJ, Wang Z, Wong YLE, Hung YLW, Wong HT, Yang M, Zhang F, Chan TWD. Rapid Differentiation of Asian and American Ginseng by Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Using Stepwise Modulation of Gas Modifier Concentration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2212-2221. [PMID: 31502223 DOI: 10.1007/s13361-019-02317-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/21/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
This study reports a rapid and robust method for the differentiation of Asian and American ginseng samples based on differential ion mobility spectrometry-tandem mass spectrometry (DMS-MS/MS). Groups of bioactive ginsenoside/pseudo-ginsenoside isomers, including Rf/Rg1/F11, Rb2/Rb3/Rc, and Rd/Re, in the ginseng extracts were sequentially separated using DMS with stepwise changes in the gas modifier concentration prior to MS analysis. The identities of the spatially separated ginsenoside/pseudo-ginsenoside isomers were confirmed by their characteristic compensation voltages at specific modifier loading and MS/MS product ions. As expected, Asian ginseng samples contained some Rf and an insignificant amount of F11, whereas American ginseng samples had a high level of F11 but no Rf. The origin of the whole and sliced ginseng could further be confirmed using the quantitative ratios of three sets of ginsenoside markers, namely, Rg1/Re, Rb1/Rg1, and Rb2/Rc. Based on our results, new benchmark ratios of Rg1/Re < 0.15, Rb1/Rg1 > 2.15, and Rb2/Rc < 0.26 were proposed for American ginseng (as opposed to Asian ginseng).
Collapse
Affiliation(s)
- Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.
| | - Wei-Jing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Ze Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Y-L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Y-L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - H-T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
| |
Collapse
|
8
|
Kaszycki JL, La Rotta A, Colsch B, Fenaille F, Dauly C, Kamleh A, Wu C. Separation of biologically relevant isomers on an Orbitrap mass spectrometer using high-resolution drift tube ion mobility and varied drift gas mixtures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:3-10. [PMID: 30772932 DOI: 10.1002/rcm.8414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Atmospheric pressure drift tube ion mobility is a powerful addition to the Orbitrap mass spectrometer enabling direct separation of isomers. Apart from offering high resolving power in a compact design, it also facilitates optimization of the separation gas, as shown here for a series of biologically relevant isomer pairs. METHODS An Excellims MA3100 High-Resolution Atmospheric Pressure Ion Mobility Spectrometer (HR-IMS) was coupled to a Thermo Scientific™ Q Exactive™ Focus hybrid quadrupole-Orbitrap™ mass spectrometer, using an Excellims Directspray™ Electrospray Ionization source and a gas mixture setup to provide various drift gases (air, CO2 and mixtures). This instrument combination was used to separate isomers of eight pairs of metabolites and gangliosides, optimizing drift gas conditions for best separation of each set. RESULTS All but one of the isomers pairs provided could be partially or fully separated by the HR-IMS-MS combination using ion mobility drift times. About half of the separated compounds showed significantly better analytical separation when analyzed in a mixture of CO2 and air rather than air or CO2 alone. Resolving power of up to 102 was achieved using the 10 cm atmospheric drift tube ion mobility add-on for the Orbitrap mass spectrometer. CONCLUSIONS The present analysis demonstrates the usefulness of using atmospheric drift tube IMS on an Orbitrap mass spectrometer to characterize the isomeric composition of samples. It also highlights the potential benefits of being able to quickly optimize the drift gas composition to selectively maximize the mobility difference for isomer separation.
Collapse
Affiliation(s)
| | | | - Benoit Colsch
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, F-91191, Gif-sur-Yvette, France
| | | | | | - Ching Wu
- Excellims Corporation, Acton, MA, USA
| |
Collapse
|
9
|
Bravo-Veyrat S, Hopfgartner G. High-throughput liquid chromatography differential mobility spectrometry mass spectrometry for bioanalysis: determination of reduced and oxidized form of glutathione in human blood. Anal Bioanal Chem 2018; 410:7153-7161. [DOI: 10.1007/s00216-018-1318-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
10
|
Chung SWC, Lam CH. Development of an Analytical Method for Analyzing Pyrrolizidine Alkaloids in Different Groups of Food by UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3009-3018. [PMID: 29485280 DOI: 10.1021/acs.jafc.7b06118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Suspected nontargeted pyrrolizidine alkaloids (PAs), without analytical reference standard, were observed and interfered with the determination of targeted PAs in complex food matrices, especially for spices samples. Selectivity and applicability of multiple reaction monitoring (MRM) transitions, multistage fragmentation (MS3), and MRM with differential ion mobility spectrometry (DMS) for eliminating false positive identifications were evaluated. Afterward, a selective and sensitive LC-MS/MS method for the determination of 15 PAs and 13 PA N-oxides in foodstuffs was developed. The sample preparation and cleanup are applicable to a wide range of foodstuffs, including cereal products, dairy products, meat, eggs, honey, tea infusion, and spices. Freezing-out of the raw extract and the water/acetonitrile washing steps in a solid phase extraction was found to efficiently remove complex matrices. The method was validated at 0.05 μg kg-1 for general food and 0.5 μg kg-1 for spices, with reference to the Eurachem Guide. The estimated limit of quantifications of different PAs was in the range of 0.010-0.087 μg kg-1 for general food and 0.04-0.76 μg kg-1 for spices. Isotopically labeled PAs were used as internal standards to correct the variation of PAs/PANs performance in different food commodities. Matrix effects observed in complex food matrices could be reduced by solvent dilution. Recoveries of PAs and PA N-oxides were all seen within 50-120%.
Collapse
Affiliation(s)
- Stephen W C Chung
- Food Research Laboratory , Centre for Food Safety, Food and Environmental Hygiene Department , 4/F Public Health Laboratory Centre, 382 Nam Cheong Street , Hong Kong
| | - Chi-Ho Lam
- Food Research Laboratory , Centre for Food Safety, Food and Environmental Hygiene Department , 4/F Public Health Laboratory Centre, 382 Nam Cheong Street , Hong Kong
| |
Collapse
|
11
|
Maleki H, Maurer MM, Ronaghi N, Valentine SJ. Ion Mobility, Hydrogen/Deuterium Exchange, and Isotope Scrambling: Tools to Aid Compound Identification in ‘Omics Mixtures. Anal Chem 2017; 89:6399-6407. [PMID: 28505408 DOI: 10.1021/acs.analchem.7b00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hossein Maleki
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Megan M. Maurer
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Nima Ronaghi
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry. Anal Chim Acta 2017; 961:82-90. [DOI: 10.1016/j.aca.2017.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022]
|
13
|
Barran P. From Microsolvation to Cell Permeation: Novel Separation Science for Drug Discovery. ACS CENTRAL SCIENCE 2017; 3:158-160. [PMID: 28386592 PMCID: PMC5364446 DOI: 10.1021/acscentsci.7b00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
14
|
Dong X, Wang R, Zhou X, Li P, Yang H. Current mass spectrometry approaches and challenges for the bioanalysis of traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:15-26. [DOI: 10.1016/j.jchromb.2015.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
15
|
Regueiro J, Giri A, Wenzl T. Optimization of a Differential Ion Mobility Spectrometry–Tandem Mass Spectrometry Method for High-Throughput Analysis of Nicotine and Related Compounds: Application to Electronic Cigarette Refill Liquids. Anal Chem 2016; 88:6500-8. [DOI: 10.1021/acs.analchem.6b01241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge Regueiro
- European
Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium
| | - Anupam Giri
- European
Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium
| | - Thomas Wenzl
- European
Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium
| |
Collapse
|
16
|
de Raad M, Fischer CR, Northen TR. High-throughput platforms for metabolomics. Curr Opin Chem Biol 2015; 30:7-13. [PMID: 26544850 DOI: 10.1016/j.cbpa.2015.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/11/2015] [Indexed: 01/06/2023]
Abstract
Mass spectrometry has become a choice method for broad-spectrum metabolite analysis in both fundamental and applied research. This can range from comprehensive analysis achieved through time-consuming chromatography to the rapid analysis of a few target metabolites without chromatography. In this review article, we highlight current high-throughput MS-based platforms and their potential application in metabolomics. Although current MS platforms can reach throughputs up to 0.5 seconds per sample, the metabolite coverage of these platforms are low compared to low-throughput, separation-based MS methods. High-throughput comes at a cost, as it's a trade-off between sample throughput and metabolite coverage. As we will discuss, promising emerging technologies, including microfluidics and miniaturization of separation techniques, have the potential to achieve both rapid and more comprehensive metabolite analysis.
Collapse
Affiliation(s)
- Markus de Raad
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States
| | - Curt R Fischer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States
| | - Trent R Northen
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States.
| |
Collapse
|