1
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
2
|
Zhao J, Zhang L, Cao J, Yu Y, Ma B, Jiang Y, Han J, Wang W. Sequence-Prescribed β-Sheet for Enhanced Electron Tunneling: Boosting Interface Recognition and Electrochemical Measurement. Anal Chem 2024; 96:11092-11102. [PMID: 38924493 DOI: 10.1021/acs.analchem.4c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Peptide self-assemblies could leverage their specificity, stability, biocompatibility, and electrochemical activity to create functionalized interfaces for molecular sensing and detection. However, the dynamics within these interfaces are complex, with competing forces, including those maintaining peptide structures, recognizing analytes, and facilitating signal transmission. Such competition could lead to nonspecific interference, compromising the detection sensitivity and accuracy. In this study, a series of peptides with precise structures and controllable electron transfer capabilities were designed. Through examining their stacking patterns, the interplay between the peptides' hierarchical structures, their ability to recognize targets, and their conductivity were clarified. Among these, the EP5 peptide assembly was identified for its ability to form controllable electronic tunnels facilitated by π-stacking induced β-sheets. EP5 could enhance the long-range conductivity, minimize nonspecific interference, and exhibit targeted recognition capabilities. Based on EP5, an electrochemical sensing interface toward the disease marker PD-L1 (programmed cell death ligand 1) was developed, suitable for both whole blood assay and in vivo companion diagnosis. It opens a new avenue for crafting electrochemical detection interfaces with specificity, sensitivity, and compatibility.
Collapse
Affiliation(s)
- Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jingtian Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bokai Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Design and Manufacture of a Low-Cost Microfluidic System for the Synthesis of Giant Liposomes for the Encapsulation of Yeast Homologues: Applications in the Screening of Membrane-Active Peptide Libraries. MICROMACHINES 2021; 12:mi12111377. [PMID: 34832789 PMCID: PMC8619280 DOI: 10.3390/mi12111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts’ surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs and homologues of yeasts expressing MAPs. The homologues were chitosan microparticles functionalized with the membrane translocating peptide Buforin II, while intimate contact was through passive micromixers with different channel geometries. Both microfluidic platforms were evaluated both in silico (via Multiphysics simulations) and in vitro with a high agreement between the two approaches. Large and stable GUVs (5–100 µm) were synthesized effectively, and the mixing processes were comprehensively studied leading to finding the best operating parameters. A serpentine micromixer equipped with circular features showed the highest average encapsulation efficiencies, which was explained by the unique mixing patterns achieved within the device. The microfluidic devices developed here demonstrate high potential as platforms for the discovery of novel MAPs as well as for other applications in the biomedical field such as the encapsulation and controlled delivery of bioactive compounds.
Collapse
|
5
|
Zhou J, Li Y, Huang W, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem 2021; 224:113712. [PMID: 34303870 DOI: 10.1016/j.ejmech.2021.113712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
Peptide-drug conjugates (PDCs) are a class of novel molecules widely designed and synthesized for delivering payload drugs. The peptide part plays a vital role in the whole molecule, because they determine the ability of the molecules to penetrate the membrane and target to the specific targets. Here, we introduce the source of different kinds of cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs) that have been used or could be used in constructing PDCs as well as their latest application in delivering drugs. What's more, the approaches of developing CPPs and CTPs and the techniques to discover novel peptides are focused on and summarized in the review. This review aims to help relevant researchers fast understand the research status of peptides in PDCs and carry forward the process of novel peptides discovery.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuanyuan Li
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wenlong Huang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Wei Shi
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Hai Qian
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
6
|
Guo M, Zhang L, Tian Y, Wang M, Wang W. Living-System-Driven Evolution of Self-Assembled-Peptide Probes: For Boosting Glioma Theranostics. Anal Chem 2021; 93:8035-8044. [PMID: 34043336 DOI: 10.1021/acs.analchem.1c01151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary principle for new molecular evolution is from nature, mimicking nature, and beyond nature, since it is extremely important for the artificial molecules to keep their structure and function in the natural system. It is especially true for the self-assembled supramolecular construction in situ in complicated living bodies. Herein, we put forward a directed evolution strategy consisting of high-content screening from the living system and artificial modification in order to find "totipotential peptides" in a precise way. Progressive dimension reduction of the capability and precise anchoring of the target were realized. Through the living system evolution, we obtain a glioma-targeting and living system-induced self-assembled leading compound CCP. Through the artificial evolution, CCP was further stapled and was hydrophobically modified as NSCCP2, which demonstrated stability and NIR-II emission characteristics. NSCCP2 could realize high-resolution molecular imaging and therapy simultaneously. We envision that the strategy and its applications provide a new method for molecular discovery and improve the performance of peptide nano-self-assemblies for diagnostics and therapy.
Collapse
Affiliation(s)
- Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuwei Tian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
7
|
Multi-stage responsive peptide nanosensor: Anchoring EMT and mitochondria with enhanced fluorescence and boosting tumor apoptosis. Biosens Bioelectron 2021; 184:113235. [PMID: 33887614 DOI: 10.1016/j.bios.2021.113235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is closely related to tumor metastasis and invasion. Thereinto, mesenchymal tumor mitochondria are the critical target for tumor inhibition. Therefore, real-time in vivo monitoring of EMT as well as inhibiting mesenchymal tumor mitochondria is of great diagnosis and therapy significance. Herein, we construct a multi-stage recognition and morphological transformable self-assembly-peptide nano biosensor NDRP which can response the EMT marker and specifically damage the mesenchymal tumor cell in vivo. This nano-molar-affinity sensor is designed and screened with sensitive peptides containing a molecular switching which could be specifically triggered by the receptor to achieve the vesicle-to-fibril transformation in living system with enhanced fluorescent signal. NDRP nanosensor could target the tumor lesion in circulatory system, recognize mesenchymal tumor marker DDR2 (Discoidin domain receptor 2) in cellular level and specifically achieve mitochondria in subcellular level as well as damaged mitochondria which could be applied as a in vivo theranostic platform.
Collapse
|
8
|
Chen M, Song Z, Han R, Li Y, Luo X. Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum. Biosens Bioelectron 2021; 178:113016. [DOI: 10.1016/j.bios.2021.113016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 01/19/2023]
|
9
|
Peptide-Based Nanomaterials for Tumor Immunotherapy. Molecules 2020; 26:molecules26010132. [PMID: 33396754 PMCID: PMC7796410 DOI: 10.3390/molecules26010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
With the increasing understanding of tumor immune circulation mechanisms, tumor immunotherapy including immune checkpoint blockade has become a research hotspot, which requires the development of more accurate and more efficient drugs with fewer side effects. In line with this requirement, peptides with good biocompatibility, targeting, and specificity become favorable theranostic reagents, and a series of promising candidates for tumor immunotherapy based on peptides have been developed. Additionally, the advantages of nanomaterials as drug carriers such as higher affinity have been demonstrated, providing possibilities of combination therapy. In this review, we summarize the development of peptide-based nanomaterials in tumor immunotherapy from the two aspects of functionalization and self-assembly. Furthermore, new methods for peptide screening, especially machine-learning-related strategies, is also a topic we were interested in, as this forms the basis for the construction of peptide-based platforms. Peptides provide broad prospects for tumor immunotherapy and we hope that this summary can provide insight into possible avenues for future exploration.
Collapse
|
10
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
11
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
12
|
Song Z, Chen M, Ding C, Luo X. Designed Three-in-One Peptides with Anchoring, Antifouling, and Recognizing Capabilities for Highly Sensitive and Low-Fouling Electrochemical Sensing in Complex Biological Media. Anal Chem 2020; 92:5795-5802. [PMID: 32191435 DOI: 10.1021/acs.analchem.9b05299] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonspecific adsorption is of great concern for electrochemical biosensors performing in complex biological media, and various antifouling materials have been introduced into the sensing interfaces to improve the antifouling capability of different biosensors. However, for most of the biosensors with antifouling materials and sensing probes coexisting in the sensing interfaces, either the antifouling materials will impair the sensing performances or the sensing probes will affect the antifouling ability. Herein, a facile and efficient antifouling biosensor was developed based on a newly designed three-in-one peptide with anchoring, antifouling, and recognizing capabilities. One end of the designed peptide is a unique anchoring part that is rich in amine groups, and this part can be anchored to the poly(3,4-ethylenedioxythiophene) (PEDOT)-citrate film electrodeposited on a glassy carbon electrode. The other end of the peptide is a recognizing part that can specifically bind to the aminopeptidase N (APN) and human hepatocellular carcinoma cells (HepG2 cells). Meanwhile, the middle part of the peptide, together with the anchoring part, was designed to be antifouling. With this designed multifunctional peptide, highly sensitive and low-fouling biosensors capable of assaying target APN and HepG2 cells in complex biological media can be easily prepared, with detection limits of 0.4 ng·mL-1 and 20 cells·mL-1, respectively. This antifouling biosensor is feasible for practical target detection in real complex samples, and it is highly expected that this peptide designing strategy may be extended to the development of various antifouling biosensors.
Collapse
Affiliation(s)
- Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Min Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
13
|
Murrell E, Luyt LG. Incorporation of Fluorine into an OBOC Peptide Library by Copper-Free Click Chemistry toward the Discovery of PET Imaging Agents. ACS COMBINATORIAL SCIENCE 2020; 22:109-113. [PMID: 32011850 DOI: 10.1021/acscombsci.9b00146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A one-bead one-compound (OBOC) library of peptide-based imaging agents was developed where a 19F-containing moiety was added onto the N-terminus of octamer peptides through copper-free click chemistry prior to screening of the library. This created a library of complete imaging agents that was screened against CXCR4, a receptor of interest for cancer imaging. The screen directly resulted in the discovery of a peptide-based imaging agent with an IC50 of 138 μM. This proof-of-concept study describes a new type of OBOC peptide library design, where hits discovered from screening can be easily translated into their fluorine-18 counterpart for PET imaging without loss of affinity.
Collapse
Affiliation(s)
- Emily Murrell
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Leonard G. Luyt
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Departments of Oncology and Medical Imaging, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, 790 Commissioners Road East, London, Ontario N6A 4L6, Canada
| |
Collapse
|
14
|
Jia X, Guo M, Han Q, Tian Y, Yuan Y, Wang Z, Qian Y, Wang W. Synergetic Tumor Probes for Facilitating Therapeutic Delivery by Combined-Functionalized Peptide Ligands. Anal Chem 2020; 92:5650-5655. [DOI: 10.1021/acs.analchem.0c00440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Mingmei Guo
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiuju Han
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yuwei Tian
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yafei Yuan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yixia Qian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Weizhi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
Pan X, Xu J, Jia X. Research Progress Evaluating the Function and Mechanism of Anti-Tumor Peptides. Cancer Manag Res 2020; 12:397-409. [PMID: 32021452 PMCID: PMC6970611 DOI: 10.2147/cmar.s232708] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors cause a high mortality rate worldwide, and they severely threaten human health and negatively affect the economy. Despite the advancements in tumor-related molecular genetics and effective new processes in anti-tumor drug development, the anti-tumor drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for curing cancer. The peptide has become a suitable agent due to its exact molecular weight between whole protein and small molecule, and it has high targeting ability, high penetrability, low immunogenicity, and is convenient to synthesize and easy to modify. Because of these advantages, peptides have excellent prospect for application as anti-tumor agents. This article reviews the recent research progress evaluating anti-tumor peptides and their anti-tumor mechanisms, and may act as a reference for the future development and clinical application of anti-tumor peptides. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/snZy3e6sVio
Collapse
Affiliation(s)
- Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Wang W, Hu Z. Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804827. [PMID: 30537222 DOI: 10.1002/adma.201804827] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Indexed: 05/27/2023]
Abstract
A series of novel peptide-based molecular probes for different biomarkers is highlighted herein. These probes can provide targeted recognition with high affinity, high specificity, high penetration, and rapid excretion ability. These sensitive peptides can achieve rapid and specific detection when they are conjugated with imaging moieties or are formed into nanoprobes, which can be adapted for in vivo molecular imaging in targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
17
|
Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, Wang C, Zhu L, Yang Y. Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas. Nanotheranostics 2019; 3:311-330. [PMID: 31687320 PMCID: PMC6821994 DOI: 10.7150/ntno.38954] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is one of the most common primary tumor types of central nervous system (CNS) with high malignance and lethality. Although many treatment options are currently available, the therapy of brain cancers remains challenging because of blood-brain-barrier (BBB) which prevents most of the chemotherapeutics into the CNS. In this work, a poly(amidoamine) dendrimer-based carrier was fabricated and modified with angiopep-2 (Ang2) peptide that has been demonstrated to bind to low density lipoprotein receptor-relative protein-1 (LRP1) on the endothelial cells of BBB and could therefore induce BBB penetration of the carrier. To improve tumor-targeting effect towards the glioma sites, the dendrimer was simultaneously functionalized with an epidermal growth factor receptor (EGFR)-targeting peptide (EP-1) which was screened from a "one-bead one-compound" (OBOC) combinatorial library. EP-1 peptide was demonstrated to have high affinity and specificity to EGFR at both the molecular and cellular levels. The dual-targeting dendrimer exhibited outstanding BBB penetrability and glioma targeting efficiency both in vitro and in vivo, which strikingly enhanced the anti-gliomas effect of the drugs and prolonged the survival of gliomas-bearing mice. These results show the potential of the dual-targeting dendrimer-based carrier in the therapy of gliomas through enhancing BBB penetrability and tumor targeting.
Collapse
Affiliation(s)
- Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Iman Rostami
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinru Jia
- Department of Chemistry, Peking University, Beijing 100871, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Shi F, Ma Y, Qian Y, Wang Y, Wang Z, Zhao M, Hu Z. A Novel Peptide Probe for Identification of PLS3-Expressed Cancer Cells. Anal Chem 2019; 91:9640-9647. [PMID: 31293151 DOI: 10.1021/acs.analchem.9b01061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The T-plastin (PLS3) has a significant implication in epithelial-mesenchymal transition (EMT) and breast cancer prognosis. Using one-bead-one-compound library strategy, a novel peptide TP1 (KVKSDRVC) toward PLS3 was screened and exhibited the specificity for identifying PLS3-expressed cancer cells. Moreover, we found Fluorescein isothiocyanate-labeled TP1 (FITC-TP1) could act as a novel probe for EMT-induced cancer cells, preferentially in the leading edge. It also has satisfactory specificity for PLS3-expressed cancer cells spiked in the blood. FITC-TP1 was expected to become a diagnostic tool to identify PLS3-expressed circulating tumor cells and predict prognosis for patients with breast cancer in the future.
Collapse
Affiliation(s)
- Fanghao Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China.,School of Nanoscience and Technology, Sino-Danish College , University of Chinese Academy of Sciences , Beijing 100049 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
| | - Yixia Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China.,School of Nanoscience and Technology, Sino-Danish College , University of Chinese Academy of Sciences , Beijing 100049 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
| | - Zihua Wang
- Center for Neuroscience Research, School of Basic Medical Sciences , Fujian Medical University , Fuzhou 350108 , China
| | - Minzhi Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China.,School of Nanoscience and Technology, Sino-Danish College , University of Chinese Academy of Sciences , Beijing 100049 , China.,Center for Neuroscience Research, School of Basic Medical Sciences , Fujian Medical University , Fuzhou 350108 , China
| |
Collapse
|
19
|
Liu C, Gao H, Zhao Z, Rostami I, Wang C, Zhu L, Yang Y. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B 2019. [DOI: 10.1039/c9tb00433e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dual-functional drug delivery system based on the conjugation of PAMAM dendrimer with EBP-1 and TAT peptide was established for the therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Iman Rostami
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| |
Collapse
|
20
|
Komnatnyy VV, Nielsen TE, Qvortrup K. Bead-based screening in chemical biology and drug discovery. Chem Commun (Camb) 2018; 54:6759-6771. [PMID: 29888365 DOI: 10.1039/c8cc02486c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
Collapse
Affiliation(s)
- Vitaly V Komnatnyy
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | | | | |
Collapse
|
21
|
Wang W, Ma Z, Zhu S, Wan H, Yue J, Ma H, Ma R, Yang Q, Wang Z, Li Q, Qian Y, Yue C, Wang Y, Fan L, Zhong Y, Zhou Y, Gao H, Ruan J, Zhiyuan H, Liang Y, Hongjie D. Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800106. [PMID: 29682821 PMCID: PMC6485425 DOI: 10.1002/adma.201800106] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/11/2018] [Indexed: 05/04/2023]
Abstract
In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody-modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) shows promise in reaching sub-centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR-II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide-dye (CP-IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor-to-normal tissue signal ratio (T/NT > 8). Importantly, the CP-IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody-dye probes. Further, with NIR-II emitting CP-IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR-II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Shoujun Zhu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hao Wan
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jingying Yue
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Huilong Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Rui Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Qinglai Yang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yixia Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunyan Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yeteng Zhong
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ying Zhou
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hongpeng Gao
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Junshan Ruan
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hu Zhiyuan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yongye Liang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Dai Hongjie
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
22
|
Portal C, Hintersteiner M, Barbeau O, Dodd P, Huggett M, Pérez‐Pi I, Evans D, Auer M. Facile Synthesis of a Next Generation Safety-Catch Acid-Labile Linker, SCAL-2, Suitable for Solid-Phase Synthesis, On-Support Display and for Post-Synthesis Tagging. ChemistrySelect 2017; 2:6658-6662. [PMID: 29104911 PMCID: PMC5661701 DOI: 10.1002/slct.201701519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/27/2022]
Abstract
The SCAL linker, a safety catch linker, is amongst the most versatile linkers for solid phase synthesis. It was originally described in 1991 by Pátek and Lebl. Yet, its application has been hindered by the low yields of published synthetic routes. Over time, the exceptional versatility of this linker has been demonstrated in several applications of advanced solid phase synthesis of peptides and peptidomimetics. Recently, an updated synthesis of the original linker has also been presented at the 22nd American Peptide Symposium, comprising 10 steps. Herein, the design and synthesis of a next generation SCAL linker, SCAL-2, is reported. SCAL-2 features a simplified molecular architecture, which allows for a more efficient synthesis in 8 steps with superior yields. Both linkers, SCAL and SCAL-2 are compared in terms of their cleavage properties adding valuable information on how to best utilize the versatility of these linkers for solid phase synthesis.
Collapse
Affiliation(s)
- Christophe Portal
- Edinburgh BioQuarter9 Little France Road, EdinburghScotland EH16 4UXU.K.
| | - Martin Hintersteiner
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Olivier Barbeau
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Peter Dodd
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Margaret Huggett
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Irene Pérez‐Pi
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - David Evans
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| |
Collapse
|
23
|
Peptide probes derived from pertuzumab by molecular dynamics modeling for HER2 positive tumor imaging. PLoS Comput Biol 2017; 13:e1005441. [PMID: 28406988 PMCID: PMC5390981 DOI: 10.1371/journal.pcbi.1005441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/04/2017] [Indexed: 01/19/2023] Open
Abstract
A high level of HER2 expression in breast cancer correlates with a higher tumor growth rate, high metastatic potential, and a poor long-term patient survival rate. Pertuzumab, a human monoclonal antibody, can reduce the effect of HER2 overexpression by preventing HER2 dimerization. In this study, a combination protocol of molecular dynamics modeling and MM/GBSA binding free energy calculations was applied to design peptides that interact with HER2 based on the HER2/pertuzumab crystal structure. Based on a β hairpin in pertuzumab from Glu46 to Lys65—which plays a key role in interacting with HER2—mutations were carried out in silico to improve the binding free energy of the hairpin that interacts with the Phe256-Lys314 of the HER2 protein. Combined the use of one-bead-one-compound library screening, among all the mutations, a peptide (58F63Y) with the lowest binding free energy was confirmed experimentally to have the highest affinity, and it may be used as a new probe in diagnosing and treating HER2-positive breast cancer. Many therapeutic approaches, including the human monoclonal antibodies trastuzumab and pertuzumab, target the human epidermal growth factor receptor 2 (HER2) of any breast cancer that features HER2 overexpression. Compared to these antibodies, peptides have many advantages, including lower cost, easier synthesis, high affinity, and lower toxicity. Here, we first designed peptides that interact with HER2 protein based on the HER2/pertuzumab crystal structure (PDB entry: 1S78), using a combination protocol of molecular dynamics modeling, molecular mechanics/generalized Born solvent-accessible surface area (MM/GBSA) binding free energy calculations. Then, combined with the peptide library screening, six peptides were selected for further analysis and experimental validations. The results of ex vivo and in vivo experiments confirmed that one peptide (58F63Y) in particular has a strong affinity and high specificity to HER2-overexpressing tumors. This may due to more paired residues and lower binding free energy in peptide 58F63Y and HER2 complex based on free energy decomposition analysis and distances calculation. While both in silico and in vitro screenings point to the same high-affinity peptide, the findings suggest that in silico screening based on calculated binding free energies is rather reliable. Additionally, based on the calculation of binding free energies among mutants, we can reduce the library capacity of one-bead-one-compound screening. In summary, we present a rather simple and rapid means of deriving a peptide with a clear binding site to its target protein.
Collapse
|
24
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
25
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Xiang Z, Yang X, Xu J, Lai W, Wang Z, Hu Z, Tian J, Geng L, Fang Q. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials 2016; 115:53-64. [PMID: 27888699 DOI: 10.1016/j.biomaterials.2016.11.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
A novel peptide (P75) targeting EGFR and HER2 is successfully screened from a one-bead-one-compound (OBOC) library containing approximately 2 × 105 peptides built with the aid of computational simulation. In vitro and in vivo analyses show that P75 binds to human epithelial growth factor receptor (EGFR) with nanomolar affinity and to epithelial growth factor receptor-2 (HER2) with a lower affinity but comparable to other reported peptides. The peptide is used to modify the surface of magnetosome nanoparticles (NPs) for targeted magnetic resonance imaging (MRI). In vitro and in vivo fluorescence imaging results suggest peptide P75 modified magnetosomes (Mag-P75) specifically bind to MDA-MB-468 and SKBR3 cells as well as xenograft tumors with surprisingly low accumulation in other organs including liver and kidney. In vivo T2-weighted MR imaging studies of the xenograft tumors from SKBR3 and MDA-MB-468 cells show obviously negative contrast enhancement. The high affinity and specificity of P75 to EGFR and HER2 positive tumors, together with the success of peptide functionalized magnetosome NPs for targeted MRI demonstrate the potential of this peptide being used in the EGFR and HER2 positive tumors diagnosis and therapy.
Collapse
Affiliation(s)
- Zhichu Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Beijing 101408, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoliang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Xu
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Jiesheng Tian
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lingling Geng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
27
|
Wen G, Liang X, Liu Q, Liang A, Jiang Z. A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosens Bioelectron 2016; 85:450-456. [DOI: 10.1016/j.bios.2016.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
|
28
|
Geng L, Wang Z, Jia X, Han Q, Xiang Z, Li D, Yang X, Zhang D, Bu X, Wang W, Hu Z, Fang Q. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery. Am J Cancer Res 2016; 6:1261-73. [PMID: 27279916 PMCID: PMC4893650 DOI: 10.7150/thno.14302] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 01/22/2023] Open
Abstract
Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery.
Collapse
|
29
|
Qian Y, Wang W, Wang Z, Han Q, Jia X, Yang S, Hu Z. Switchable probes: pH-triggered and VEGFR2 targeted peptides screening through imprinting microarray. Chem Commun (Camb) 2016; 52:5690-3. [DOI: 10.1039/c6cc01302c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we use an integrated imprinted microarray to screen out a switchable peptide probe, STP, with a novel sequence towards VEGFR2 in mild acidic conditions. In addition, STP has the characteristic of penetrating into cells in the presence of protons because its formation of an α-helix.
Collapse
Affiliation(s)
- Yixia Qian
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Science
| | - Weizhi Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zihua Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qiuju Han
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Pharmacy College
| | - Xiangqian Jia
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Pharmacy College
| | - Shu Yang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhiyuan Hu
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
30
|
Han Q, Jia X, Qian Y, Wang Z, Yang S, Jia Y, Wang W, Hu Z. Peptide functionalized targeting liposomes: for nanoscale drug delivery towards angiogenesis. J Mater Chem B 2016; 4:7087-7091. [DOI: 10.1039/c6tb01823h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VEGFR2-targeted peptide S1 functionalized liposomes show high drug delivery towards targeted tumors.
Collapse
Affiliation(s)
- Qiuju Han
- Jinzhou Medical University
- Jinzhou 121001
- China
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
| | - Xiangqian Jia
- Jinzhou Medical University
- Jinzhou 121001
- China
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
| | - Yixia Qian
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Zihua Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Shu Yang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Yunhong Jia
- Jinzhou Medical University
- Jinzhou 121001
- China
| | - Weizhi Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Zhiyuan Hu
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
31
|
Wang W, Wang Z, Bu X, Li R, Zhou M, Hu Z. Discovering of Tumor-targeting Peptides using Bi-functional Microarray. Adv Healthc Mater 2015; 4:2802-8. [PMID: 26548577 DOI: 10.1002/adhm.201500724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 01/06/2023]
Abstract
A bi-functional microarray for in situ peptide screening is presented herein, from which an affinity peptide towards EpCAM is screened out for tumor cell capture.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| | - Xiangli Bu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| | - Ren Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| | - Mingxing Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety; National Center for Nanoscience and Technology of China; Beijing 100190 China
| |
Collapse
|
32
|
Wang Z, Wang W, Geng L, Hu Z. Distinguishing of tumor cell-targeting peptide ligands through a color-encoding microarray. LAB ON A CHIP 2015; 15:4512-4516. [PMID: 26530232 DOI: 10.1039/c5lc01010a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A silicon-based microarray system was constructed to discover the affinity peptides and to distinguish the specific peptides from a high throughput library. Using a color-encoding strategy, in situ peptide distinguishing between HER1 ligands and HER2 ligands was achieved. Novel affinity peptide sequences H1P (HER1 ligand) and H2P (HER2 ligand) were determined with nmol affinity.
Collapse
Affiliation(s)
- Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | |
Collapse
|
33
|
Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H. In Situ Formation of Nanofibers from Purpurin18-Peptide Conjugates and the Assembly Induced Retention Effect in Tumor Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6125-30. [PMID: 26350172 DOI: 10.1002/adma.201502598] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/13/2015] [Indexed: 05/23/2023]
Abstract
An assembly-induced retention effect for enhanced tumor photoacoustic (PA) imaging and therapeutics is described. A responsive small-molecule precursor is prepared that simultaneously self-assembles into nanofibers in tumor sites that exhibit an assembly-induced retention effect, which results in an improved PA imaging signal and enhanced therapeutic efficacy. This successful proof-of-concept study paves the way to develop novel supramolecular biomaterials for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| | - Guo-Bin Qi
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| | - Ying-Xi Zhao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| | - Sheng-Lin Qiao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| | - Chao Yang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Zhongguancun, 100190, Beijing, China
| |
Collapse
|
34
|
Wang Z, Wang W, Bu X, Wei Z, Geng L, Wu Y, Dong C, Li L, Zhang D, Yang S, Wang F, Lausted C, Hood L, Hu Z. Microarray based screening of peptide nano probes for HER2 positive tumor. Anal Chem 2015. [PMID: 26218790 DOI: 10.1021/acs.analchem.5b01588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peptides are excellent biointerface molecules and diagnostic probes with many advantages such as good penetration, short turnover time, and low cost. We report here an efficient peptide screening strategy based on in situ single bead sequencing on a microarray. Two novel peptides YLFFVFER (H6) and KLRLEWNR (H10) specifically binding to the tumor biomarker human epidermal growth factor receptor 2 (HER2) with aKD of 10(-8) M were obtained from a 10(5) library. Conjugated to nanoparticles, both the H6 and H10 probes showed specific accumulation in HER2-positive tumor tissues in xenografted mice by in vivo imaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Wu
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Chengyan Dong
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Liqiang Li
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | | | | | - Fan Wang
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Christopher Lausted
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Leroy Hood
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Zhiyuan Hu
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States.,∥Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing China, 102206
| |
Collapse
|
35
|
Geng L, Wang Z, Yang X, Li D, Lian W, Xiang Z, Wang W, Bu X, Lai W, Hu Z, Fang Q. Structure-based Design of Peptides with High Affinity and Specificity to HER2 Positive Tumors. Am J Cancer Res 2015; 5:1154-65. [PMID: 26284145 PMCID: PMC4533098 DOI: 10.7150/thno.12398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/05/2015] [Indexed: 01/25/2023] Open
Abstract
To identify peptides with high affinity and specificity against human epidermal growth factor receptor 2 (HER2), a series of peptides were designed based on the structure of HER2 and its Z(HER2:342) affibody. By using a combination protocol of molecular dynamics modeling, MM/GBSA binding free energy calculations, and binding free energy decomposition analysis, two novel peptides with 27 residues, pep27 and pep27-24M, were successfully obtained. Immunocytochemistry and flow cytometry analysis verified that both peptides can specifically bind to the extracellular domain of HER2 protein at cellular level. The Surface Plasmon Resonance imaging (SPRi) analysis showed that dissociation constants (K D) of these two peptides were around 300 nmol/L. Furthermore, fluorescence imaging of peptides against nude mice xenografted with SKBR3 cells indicated that both peptides have strong affinity and high specificity to HER2 positive tumors.
Collapse
|