1
|
Zeng J, Sun K, Chen S, Zhang X, Wang X, Zhang B. A Microfluidic-Fabricated Rod Sprayer for Nanoelectrospray Mass Spectrometry. Anal Chem 2024; 96:3989-3993. [PMID: 38315070 DOI: 10.1021/acs.analchem.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The nanoelectrosprayer is a key device in the hyphenation of nanoLC-ESI-MS, and its development plays a crucial role in pushing forward the mining depth of biological discovery and industrialization of omics science. In this work, a new type of nanoelectrospray emitter, a rod sprayer, was developed based on microfluidic manufacture. Due to its porous silica structure, the rod sprayer in effect worked as a multinozzle sprayer, which is composed of a bunch of micrometer sized spray channels. Without the need for sophisticated microfabrication equipment, a superclean environment, or a complicated assembling process, such sprayer rods can be facilely fabricated in a mass production style: 3,600 rods with excellent monodispersity have been fabricated in 1 h, and rod sprayers thus made have demonstrated excellent intraday, interday, and interbatch reproducibilities: RSD = 1.9, 4.9, and 6.1%, respectively. The rod sprayer can generate stable electrospray in a wide voltage range from 2.6 to 3.2 kV and flow rates from 50 to 1000 nL/min, covering typical flow rates of subnanoLC, nanoLC, to microLC, and work steadily even under complex matrix environments (e.g., Hank's balanced salt solution containing sodium, magnesium, and calcium ions) without clogging. Meanwhile, the rod sprayers exhibited 200-1800% ionization efficiency enhancement in comparison with commonly used tapered tip emitters, for small molecule drugs, peptides, and proteins, respectively, and provided a broadened linear dynamic range of 4 orders of magnitude. The excellent characteristics of the rod sprayer, together with its small size and mass production capacity, should provide a high quality, high durability, high consistency, and disposable use-supported nanoelectrospray solution for MS-based bioanalyses.
Collapse
Affiliation(s)
- Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Chua ZQ, Prabhu GRD, Wang YW, Raju CM, Buchowiecki K, Ochirov O, Elpa DP, Urban PL. Moderate Signal Enhancement in Electrospray Ionization Mass Spectrometry by Focusing Electrospray Plume with a Dielectric Layer around the Mass Spectrometer's Orifice. Molecules 2024; 29:316. [PMID: 38257229 PMCID: PMC10821223 DOI: 10.3390/molecules29020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Electrospray ionization (ESI) is among the commonly used atmospheric pressure ionization techniques in mass spectrometry (MS). One of the drawbacks of ESI is the formation of divergent plumes composed of polydisperse microdroplets, which lead to low transmission efficiency. Here, we propose a new method to potentially improve the transmission efficiency of ESI, which does not require additional electrical components and complex interface modification. A dielectric plate-made of ceramic-was used in place of a regular metallic sampling cone. Due to the charge accumulation on the dielectric surface, the dielectric layer around the MS orifice distorts the electric field, focusing the charged electrospray cloud towards the MS inlet. The concept was first verified using charge measurement on the dielectric material surface and computational simulation; then, online experiments were carried out to demonstrate the potential of this method in MS applications. In the online experiment, signal enhancements were observed for dielectric plates with different geometries, distances of the electrospray needle axis from the MS inlet, and various compounds. For example, in the case of acetaminophen (15 μM), the signal enhancement was up to 1.82 times (plate B) using the default distance of the electrospray needle axis from the MS inlet (d = 1.5 mm) and 12.18 times (plate C) using a longer distance (d = 7 mm).
Collapse
Affiliation(s)
- Zi Qing Chua
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Gurpur Rakesh D. Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Yi-Wun Wang
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Krzysztof Buchowiecki
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Ochir Ochirov
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Decibel P. Elpa
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan (Y.-W.W.); (C.M.R.); (K.B.); (O.O.); (D.P.E.)
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Su P, Chen X, Smith AJ, Espenship MF, Samayoa Oviedo HY, Wilson SM, Gholipour-Ranjbar H, Larriba-Andaluz C, Laskin J. Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. Anal Chem 2021; 93:11576-11584. [PMID: 34378383 DOI: 10.1021/acs.analchem.1c02092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution, we report an efficient approach to multiplex electrospray ionization (ESI) sources for applications in analytical and preparative mass spectrometry. This is achieved using up to four orthogonal injection inlets implemented on the opposite sides of an electrodynamic ion funnel interface. We demonstrate that both the total ion current transmitted through the mass spectrometer and the signal-to-noise ratio increase by 3.8-fold using four inlets compared to one inlet. The performance of the new multiplexing approach was examined using different classes of analytes covering a broad range of mass and ionic charge. A deposition rate of >10 μg of mass-selected ions per day may be achieved by using the multiplexed sources coupled to preparative mass spectrometry. The almost proportional increase in the ion current with the number of ESI inlets observed experimentally is confirmed using gas flow and ion trajectory simulations. The simulations demonstrate a pronounced effect of gas dynamics on the ion trajectories in the ion funnel, indicating that the efficiency of multiplexing strongly depends on gas velocity field. The study presented herein opens up exciting opportunities for the development of bright ion sources, which will advance both analytical and preparative mass spectrometry applications.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xi Chen
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Andrew J Smith
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael F Espenship
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hugo Y Samayoa Oviedo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Solita M Wilson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Habib Gholipour-Ranjbar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Rodriguez ES, Lam SC, Haddad PR, Paull B. Reversed-Phase Functionalised Multi-lumen Capillary as Combined Concentrator, Separation Column, and ESI Emitter in Capillary-LC–MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
A Microstructured Fiber with Defined Borosilicate Regions to Produce a Radial Micronozzle Array for Nanoelectrospray Ionization. Sci Rep 2016; 6:21279. [PMID: 26891920 PMCID: PMC4759573 DOI: 10.1038/srep21279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
This work highlights the possibility of using microstructured fibres with predefined doped regions to produce functional microstructures at a fibre facet with differential chemical etching. A specially designed silica microstructured fibre (MSF) that possesses specific boron-doped silica regions was fabricated for the purpose of generating a radial micronozzle array. The MSF was drawn from a preform comprising pure silica capillaries surrounded by boron-doped silica rods. Different etching rates of the boron-doped and silica regions at the fiber facet produces raised nozzles where the silica capillaries were placed. Fabrication parameters were explored in relation to the fidelity and protrusion length of the nozzle. Using etching alone, the nozzle protrusion length was limited, and the inner diameter of the channels in the array is expanded. However with the addition of a protective water counter flow, nozzle protrusion is increased to 60 μm with a limited increase in hole diameter. The radial micronozzle array generated nine individual electrosprays which were characterized using spray current measurements and related to theoretical prediction. Signal enhancement for the higher charge state ions for two peptides showed a substantial signal enhancement compared to conventional emitter technology.
Collapse
|
6
|
Ren Y, Chiang S, Zhang W, Wang X, Lin Z, Ouyang Z. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples. Anal Bioanal Chem 2015; 408:1385-90. [PMID: 26521181 DOI: 10.1007/s00216-015-9129-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
Abstract
Paper spray has been developed as an ambient ionization method for direct analysis of biological samples using mass spectrometry. While distinct advantages of paper spray have been demonstrated, especially for quantitative analysis and design of disposable sample cartridges, the need for improvement has also been recognized, especially for the use with miniature mass spectrometers. In this study, we made an improvement to the sampling and ionization by adding a capillary emitter to the paper substrate to produce a paper-capillary spray, which has been shown to have significant, positive impact on the sensitivity and reproducibility for direct mass spectrometry analysis. The paper-capillary devices were fabricated and the effects of the geometry, the treatment of the capillary emitters, as well as the sample disposition methods were characterized. The method's analytical performance was also characterized for analysis of therapeutic drugs in blood samples. Quantitation of cotinine in blood using a commercial triple quadrupole and sitagliptin (Januvia®) in blood using a desktop Mini 12 ion trap mass spectrometer was also demonstrated.
Collapse
Affiliation(s)
- Yue Ren
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Spencer Chiang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenpeng Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiao Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziqing Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|