1
|
Dykstra AB, Lubinsky TG, Vitrac H, Campuzano IDG, Bondarenko PV, Simone AR. Utilization of Liquid Chromatography-Mass Spectrometry and High-Resolution Ion Mobility-Mass Spectrometry to Characterize Therapeutically Relevant Peptides with Asparagine Deamidation and Isoaspartate. Anal Chem 2025; 97:749-757. [PMID: 39714115 DOI: 10.1021/acs.analchem.4c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Rapid identification of asparagine (Asn) deamidation and isoaspartate (isoAsp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS. UHPLC-MS data acquisition was 2 h per injection, in contrast to high-throughput 1 min data acquisition of the FIA-HRIM-MS technique. A rapid 2D peptide map has been demonstrated by combining shortened gradient RP-UHPLC with HRIM, to optimize the resolution of the Asn-, Asp-, and isoAsp-containing peptides, increasing the likelihood of detecting peptides containing these quality attributes with expedited data acquisition. Additionally, this paper provides an ion mobility calibration data set for therapeutically relevant peptides (unmodified and modified) over an ion-neutral collisional cross-section range of 300-800 Å2.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | | | - Heidi Vitrac
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Iain D G Campuzano
- Molecular Analytics, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Pavel V Bondarenko
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Ashli R Simone
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
2
|
Miller SA, Jeanne Dit Fouque K, Mebel AM, Chandler KB, Fernandez-Lima F. Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences. J Phys Chem B 2024; 128:8869-8877. [PMID: 39226480 PMCID: PMC11421426 DOI: 10.1021/acs.jpcb.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fucosylated carbohydrate antigens play critical roles in physiology and pathology with function linked to their structural details. However, the separation and structural characterization of isomeric fucosylated epitopes remain challenging analytically. Here, we report for the first time the influence of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) and halogen anions (Cl-, Br-, and I-) on the gas-phase conformational landscapes of common fucosylated trisaccharides (Lewis A, X, and H types 1 and 2) and tetrasaccharides (Lewis B and Y) using trapped ion mobility spectrometry coupled to mass spectrometry and theoretical calculations. Inspection of the mobility profiles of individual standards showed a dependence on the number of mobility bands with the oligosaccharide and the alkali metal and halogen; collision cross sections are reported for all of the observed species. Results showed that trisaccharides (Lewis A, X, and H types 1 and 2) can be best mobility resolved in the positive mode using the [M + Li]+ molecular ion form (baseline resolution r ≈ 2.88 between Lewis X and A); tetrasaccharides can be best mobility resolved in the negative mode using the [M + I]- molecular ion form (baseline separation r ≈ 1.35 between Lewis B and Y). The correlation between the number of oligosaccharide conformers as a function of the molecular ion adduct was studied using density functional theory. Theoretical calculations revealed that smaller cations can form more stable structures based on the number of coordinations, while larger cations induced greater oligosaccharide reorganizations; candidate structures are proposed to better understand the gas-phase oligosaccharide rearrangement trends. Inspection of the candidate structures suggests that the interplay between ion size/charge density and molecular structure dictated the conformational preferences and, consequently, the number of mobility bands and the mobility separation across isomers. This work provides a fundamental understanding of the gas-phase structural dynamics of fucosylated oligosaccharides and their interaction with alkali metals and halogens.
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Brown Chandler
- Translational Glycobiology Institute, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Fu S, Wang C, Li J, Yu J, Tang K. Simulation study of a new racetrack FAIMS analyzer to achieve both high-resolution and high-sensitivity. Talanta 2024; 276:126305. [PMID: 38788385 DOI: 10.1016/j.talanta.2024.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
A new racetrack field-asymmetric waveform ion mobility spectrometry (r-FAIMS) analyzer was developed in this study by combining the existing planar FAIMS (p-FAIMS) and cylindrical FAIMS (c-FAIMS). The ion inlet and outlet regions of r-FAIMS were consisted of a half of c-FAIMS, respectively, and these c-FAIMS were further connected by two p-FAIMS to form a racetrack shaped FAIMS. With such FAIMS working electrode configuration, the ions entering the r-FAIMS can be focused and separated in the first c-FAIMS section, be further separated in the p-FAIMS section with high-resolution, be focused and separated again in the final c-FAIMS section and eventually enter the mass spectrometer or other analyzers for analysis. Detailed simulation by using SIMION software with the default FAIMS user program showed that the ion focusing effect in the first c-FAIMS section ensures the ions entering the following p-FAIMS section as a compact ion packet. This effectively decreases the ion loss caused by Coulomb repulsion and thermal diffusion in p-FAIMS section as compared to the ions being introduced into the p-FAIMS gap randomly in the conventional design. As a result, the ion transmission efficiency of r-FAIMS is at least 3.3-fold higher than the single p-FAIMS under the operating conditions used in this study. The ion trajectory simulation results also showed that the resolving power of r-FAIMS is about the sum of the resolving powers for its c-FAIMS and p-FAIMS sections. The resolving power of r-FAIMS is at least 3.6-fold higher than the single c-FAIMS under the operation conditions used in this study. Therefore, the r-FAIMS can realize both high-resolution and high-sensitive ion mobility separation.
Collapse
Affiliation(s)
- Shoushuai Fu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Chenlu Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
4
|
Liu W, Chen Y, Liu F, Yin X, Cai J, Xia Y, Yu J, Jing G, Li W, Liu W. Effect of resolution enhancement using metal ion assisted strategy based on electrospray ionization-ion mobility spectrometry: A case study of carbendazim and thiabendazole in fruits. Talanta 2024; 267:125151. [PMID: 37672988 DOI: 10.1016/j.talanta.2023.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
A method for the rapid and simultaneous determination of carbendazim and thiabendazole residues by electrospray ionization-ion mobility spectrometry (ESI-IMS) combined with a metal ion-assisted technique was developed and validated in different fruit matrices. The metal ion assisted strategy was performed instead of tedious pre-separation procedures to overcome the limitation of low resolution of IMS. Four transition metal cations, Co(II), Ni(II), Cu(II), and Zn(II), were screened and their interactions with carbendazim and thiabendazole were investigated. The injection flow rate and metal ion concentration were optimized. The Cu(II) assisted approach helped to achieve well-separated peaks with a peak-to-peak resolution of 3.61. This method was then applied to detect carbendazim and thiabendazole simultaneously in apples, pears, bananas, and mangoes. The limit of detection (LOD) were 0.03 mg kg-1 and 0.13 mg kg-1 for carbendazim and thiabendazole, respectively, while spiked recoveries were 61.5-122.0% and 83.5-119.8%, respectively, with RSDs less than 13.9%. These satisfactory evaluation parameters indicated that the approach was capable of performing quantitative analysis of multi-pesticide residues. In addition, the feasibility of using metal ion assisted-ESI-IMS for the simultaneous detection also was theoretically demonstrated through molecular electrostatic potential analysis and binding energy calculation based on density functional theory (DFT). Both experimental and theoretical results revealed the effectiveness of the metal ion assisted strategy in improving the resolution of ESI-IMS.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Yanjing Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Fei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xurong Yin
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jiayi Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
5
|
Hou Y, Zhou S, Xu X, Kou M, Kong X. Selective confinement of potassium, rubidium, or caesium ions in a non-covalent hydroxyproline octamer cage stabilized by cis-hydroxyl locks. Phys Chem Chem Phys 2023; 25:22614-22618. [PMID: 37584166 DOI: 10.1039/d3cp03230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
While numerous studies have focused on the impact of chirality on some magic amino acid clusters, this article investigates the effects of steric isomerization using 4-hydroxyproline octamers as a model system. Through mass spectrometry, infrared photodissociation spectroscopy, and theoretical calculation, it was demonstrated that the cis-4-hydroxy-L-proline octamer can selectively cage potassium, rubidium, or caesium ions through stable cis-hydroxyl locks, while the trans-form cannot. The results highlight the importance of hydroxyl group orientation in designing biocompatible membrane transporters with high ion-selectivity.
Collapse
Affiliation(s)
- Yameng Hou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Sijin Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xingshi Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Majeed HA, Bos TS, Voeten RLC, Kranenburg RF, van Asten AC, Somsen GW, Kohler I. Trapped ion mobility mass spectrometry of new psychoactive substances: Isomer-specific identification of ring-substituted cathinones. Anal Chim Acta 2023; 1264:341276. [PMID: 37230720 DOI: 10.1016/j.aca.2023.341276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
New psychoactive substances (NPS) are synthetic derivatives of illicit drugs designed to mimic their psychoactive effects. NPS are typically not controlled under drug acts or their legal status depends on their molecular structure. Discriminating isomeric forms of NPS is therefore crucial for forensic laboratories. In this study, a trapped ion mobility spectrometry time-of-flight mass spectrometry (TIMS-TOFMS) approach was developed for the identification of ring-positional isomers of synthetic cathinones, a class of compounds representing two-third of all NPS seized in Europe in 2020. The optimized workflow features narrow ion-trapping regions, mobility calibration by internal reference, and a dedicated data-analysis tool, allowing for accurate relative ion-mobility assessment and high-confidence isomer identification. Ortho-, meta- and para-isomers of methylmethcathinone (MMC) and bicyclic ring isomers of methylone were assigned based on their specific ion mobilities within 5 min, including sample preparation and data analysis. The resolution of two distinct protomers per cathinone isomer added to the confidence in identification. The developed approach was successfully applied to the unambiguous assignment of MMC isomers in confiscated street samples. These findings demonstrate the potential of TIMS-TOFMS for forensic case work requiring fast and highly-confident assignment cathinone-drug isomers in confiscated samples.
Collapse
Affiliation(s)
- Hany A Majeed
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Tijmen S Bos
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Robert L C Voeten
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Ruben F Kranenburg
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Forensic Laboratory, Unit Amsterdam, Dutch National Police, Kabelweg 25, 1014 BA, Amsterdam, the Netherlands; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands
| | - Arian C van Asten
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands
| | - Isabelle Kohler
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Li J, Li L, Gao W, Shi S, Yu J, Tang K. Two-Dimensional FAIMS-IMS Characterization of Peptide Conformers with Resolution Exceeding 1000. Anal Chem 2022; 94:6363-6370. [PMID: 35412805 DOI: 10.1021/acs.analchem.2c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-performance field asymmetric waveform ion mobility spectrometry (FAIMS)-IMS-MS platform was developed and applied to explore the conformational diversity of the singly and doubly charged bradykinin (BK + H+)+ and (BK + 2H+)2+ ions. With pure N2 as the FAIMS carrier gas, more than ten conformers of (BK + H+)+ can be resolved using FAIMS-IMS, as compared to only four conformers resolved using either FAIMS or IMS alone. Interestingly, multiple conformers of (BK + H+)+ were found to have completely different values of FAIMS compensation voltage (CV), while their IMS drift times were essentially the same, which were also proven experimentally to not result from the structural annealing by the collisional heating in the ion funnel. The separations in the FAIMS and IMS dimensions are substantially orthogonal, and the overall resolving power of two-dimensional FAIMS-IMS separation is largely proportional to the product of the separation resolving powers of FAIMS and IMS. Using a gas mixture of N2/He to further improve the resolving power of the FAIMS separation, the total resolving powers of the combined FAIMS and IMS separation were estimated to be about 1020 and 1400 for (BK + H+)+ and (BK + 2H+)2+ ions, respectively, which are significantly higher than the resolving power of any ion mobility-based separation techniques demonstrated so far. The combined FAIMS-IMS can thus be a much more powerful technique to explore the structural diversity of biomolecules.
Collapse
Affiliation(s)
- Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Lei Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Shoudong Shi
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
8
|
Yang S, Gu L, Wu F, Dai X, Xu F, Li Q, Fang X, Yu S, Ding CF. The chirality determination of amino acids by forming complexes with cyclodextrins and metal ions using ion mobility spectrometry, and a DFT calculation. Talanta 2022; 243:123363. [PMID: 35272154 DOI: 10.1016/j.talanta.2022.123363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Chiral recognition is of highly interest in the areas of chemistry, pharmaceuticals, and bioscience. An effective strategy of enantiomeric determination of amino acids (AAs) was developed in this work. All 19 natural AAs enantiomers can be easily distinguished by ion mobility-mass spectrometry of the non-covalent complexes of AAs with cyclodextrins (α-CD, β-CD and γ-CD) and Mg2+ without any chemical derivatization. Differences of the mobilities between the enantiomers' complexes is from 0.006 to 0.058 V s/cm2. In addition, the complex of [β-CD + Phe + Mg]2+ was selected as an example to study the relative quantification by measuring L/D-Phe at different molar ratio of 10:1 to 1:10 in the μM range, resulting in a good linearity (R2 > 0.99) and high sensitivity at 2 μM. A DFT calculation was also performed to illustrate the detailed molecular structure of the complexes of CDs, Mg2+ and D- or L-Phe. Both experiment and theoretical calculation showed that Mg2+ plays an important role in host/guest interactions, which changed the molecular conformations by non-covalent interaction between Mg2+ and CDs, and resulted in the different collision cross-sections of the complex ions of CDs, Mg2+ and D- or L-AAs in the gas phase. This effective and convenient strategy could potentially be utilized in scientific research and industry for routine enantiomeric determination of natural AAs, peptides and some other small chiral biomolecules such as non-natural AAs and carboxylic acid-containing drugs.
Collapse
Affiliation(s)
- Shutong Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Liancheng Gu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinhua Dai
- National Institute of Metrology, Beijing, 100029, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qiaoyu Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiang Fang
- National Institute of Metrology, Beijing, 100029, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Li J, Gao W, Wu H, Shi S, Yu J, Tang K. Application of zero-phase digital filtering for effective denoising of field asymmetric waveform ion mobility spectrometry signal. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9211. [PMID: 34643299 DOI: 10.1002/rcm.9211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Field asymmetric waveform ion mobility spectrometry (FAIMS) has a great potential to become a portable technology for rapid detection of chemical and biological agents. However, the ion current signals, measured at the exit of the planar FAIMS directly, may contain different types of noises. The peak information in the FAIMS spectrum, such as the compensation voltage (CV) value at the maximum peak intensity (CVP ) and the peak width at half maximum (Wh ), could not be accurately determined under the weak signal condition, which significantly limits the achievable instrument sensitivity, and there are no existing solutions to the problem. METHODS This study analyzed the noise type of FAIMS signal in detail, and three different signal processing algorithms, such as median filtering (MF), discrete wavelet transform (DWT), and zero-phase digital filtering (ZDF), were evaluated for their performance in denoising the FAIMS signal. RESULTS The results show that the standard deviation of CVp obtained from the signal denoised using ZDF algorithm is at least 31.82% smaller as compared to using MF and DWT algorithms. The standard deviation of Wh is at least 45.45% smaller using ZDF algorithm. Moreover, only ZDF algorithm can keep the percentage error for the CV value of the denoised signal to be within 0.50 ± 0.47% of the true CV value, implying the effectiveness of ZDF algorithm in denoising while retaining the integrity of the signal. CONCLUSIONS The ZDF algorithm greatly reduces the analyte peak extraction error and improves the limit of detection in FAIMS measurements.
Collapse
Affiliation(s)
- Junhui Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Wenqing Gao
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Huanming Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Shoudong Shi
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Jiancheng Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
10
|
Guan P, Xie C, Li L, Fang X, Wu F, Hu JJ, Tang K. Structural resolution of disaccharides through halogen anion complexation using negative trapped ion mobility spectrometry. Talanta 2021; 230:122348. [PMID: 33934797 DOI: 10.1016/j.talanta.2021.122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
Carbohydrates are an indispensable part of early life evolution. The determination of their structures is a key step to analyze their critical roles in biological systems. A variation of composition, glycosidic linkage, and (or) configuration between carbohydrate isomers induces structure diversity and brings challenges for their structural determination. Ion mobility spectrometry (IMS), an emerging gas-phase ion separation technology, has been considered as a promising tool for performing carbohydrate structure elucidation. In this work, eight disaccharides were analyzed by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) in the negative ion mode as the complexed form of [M + X]-, where M = disaccharide, and X = Cl, Br, and I. As compared to the positive ion analysis of the selected disaccharide in a sodiated form, a reversal charge state provided the ability to eliminate or even reverse the collision cross section (CCS) difference between disaccharide isomers. By the combination of TIMS analysis and the calculation of density functional theory, the only observed two conformers of ions [lactulose + I]- may result from different adduction sites for an iodide anion. Based on the comparison of different halogen adducts, the [M + I]- ion form exhibited more powerful ability for isomeric disaccharide differentiation with an average resolution (RP-P) of 1.17, which results in a 34.5% improvement as compared to the corresponding chloride adducts. This result indicates that the use of negative charge states, especially the complexation of an iodide anion, could be a supplemental strategy to commonly used positive ion analysis for carbohydrate separation.
Collapse
Affiliation(s)
- Pengfei Guan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chengyi Xie
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xiangyu Fang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jun Jack Hu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
11
|
Maillard JF, Le Maître J, Rüger CP, Ridgeway M, Thompson CJ, Paupy B, Hubert-Roux M, Park M, Afonso C, Giusti P. Structural analysis of petroporphyrins from asphaltene by trapped ion mobility coupled with Fourier transform ion cyclotron resonance mass spectrometry. Analyst 2021; 146:4161-4171. [PMID: 34047731 DOI: 10.1039/d1an00140j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular characterization of compounds present in highly complex mixtures such as petroleum is proving to be one of the main analytical challenges. Heavy fractions, such as asphaltenes, exhibit immense molecular and isomeric complexity. Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with its unequalled resolving power, mass accuracy and dynamic range can address the isobaric complexity. Nevertheless, isomers remain largely inaccessible. Therefore, another dimension of separation is required. Recently, ion mobility mass spectrometry has revealed great potential for isomer description. In this study, the combination of trapped ion mobility and Fourier transform ion cyclotron resonance mass spectrometry (TIMS-FTICR) is used to obtain information on the structural features and isomeric diversity of vanadium petroporphyrins present in heavy petroleum fractions. The ion mobility spectra provided information on the isomeric diversity of the different classes of porphyrins. The determination of the collision cross section (CCS) from the peak apex allows us to hypothesize about the structural aspects of the petroleum molecules. In addition, the ion mobility signal full width at half maximum (FWHM) was used as a measure for isomeric diversity. Finally, theoretical CCS determinations were conducted first on core structures and then on alkylated petroporphyrins taking advantage of the linear correlation between the CCS and the alkylation level. This allowed the proposal of putative structures in agreement with the experimental results. The authors believe that the presented workflow will be useful for the structural prediction of real unknowns in highly complex mixtures.
Collapse
Affiliation(s)
- Julien F Maillard
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan Cedex, France. and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Johann Le Maître
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan Cedex, France. and TOTAL Refining & Chemicals, Total Research & Technology Gonfreville, BP 27, 76700 Harfleur, France and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Christopher P Rüger
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France and Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany and Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | | | | | - Benoit Paupy
- TOTAL Refining & Chemicals, Total Research & Technology Gonfreville, BP 27, 76700 Harfleur, France and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan Cedex, France. and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | | | - Carlos Afonso
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan Cedex, France. and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Pierre Giusti
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, Mont Saint Aignan Cedex, France. and TOTAL Refining & Chemicals, Total Research & Technology Gonfreville, BP 27, 76700 Harfleur, France and International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| |
Collapse
|
12
|
Crown ethers as shift reagents in peptide epimer differentiation –conclusions from examination of ac-(H)FRW-NH2 petide sequences. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12127-020-00271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractCrown ethers with different ring sizes and substituents (18-crown-6, dibenzo-18-crown-6, dicyclohexano-18-crown-6, a chiral tetracarboxylic acid-18-crown-6 ether, dibenzo-21-crown-7, and dibenzo-30-crown-10) were evaluated as shift reagents to differentiate epimeric model peptides (tri-and tetrapeptides) using ion mobility mass spectrometry (IM-MS). The stable associates of peptide epimers with crown ethers were detected and examined using traveling-wave ion mobility time-of-flight mass spectrometer (Synapt G2-S HDMS) equipped with an electrospray ion source. The overall decrease of the epimer separation upon crown ether complexation was observed. The increase of the effectiveness of the microsolvation of a basic moiety - guanidine or ammonium group in the peptide had no or little effect on the epimer discrimination. Any increase of the epimer separation, which referred to the specific association mode between crown substituents and a given peptide sequence, was drastically reduced for the longer peptide sequence (tetrapeptide). The obtained results suggest that the application of the crown ethers as shift reagents in ion mobility mass spectrometry is limited to the formation of complexes differing in stoichiometry rather than it refers to a specific coordination mode between a crown ether and a peptide molecule.
Collapse
|
13
|
Acharya B, Kaushalya WKDN, Martens J, Berden G, Oomens J, Patrick AL. A Combined Infrared Ion Spectroscopy and Computational Chemistry Study of Hydroxyproline Isomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1205-1211. [PMID: 32383378 DOI: 10.1021/jasms.0c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyproline is a common variation of proline, with diverse biological roles. The hydroxylation of proline gives rise to several (natural and/or synthetic) isomeric forms, including both positional isomers and stereoisomers. While mass spectrometry is widely touted as a very selective analytical technique, the identification of closely related isomers often poses a challenge. In these cases, allied technologies become helpful in providing full characterization. Here, infrared multiple photon dissociation (IRMPD) spectroscopy is used to differentiate between three isomers, namely cis-3-hydroxyproline, cis-4-hydroxyproline, and trans-4-hydroxyproline. In contrast to the protonated species which show only minor variations in their IRMPD spectra, lithiated species were found to display significant spectral differences, making their differentiation more straightforward. The conformational origin of these spectral differences was investigated by complementary quantum-chemical calculations.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, United States
| | - W K D N Kaushalya
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, United States
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, United States
| |
Collapse
|
14
|
Wu Q, Wang JY, Han DQ, Yao ZP. Recent advances in differentiation of isomers by ion mobility mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115801] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Haack A, Crouse J, Schlüter FJ, Benter T, Hopkins WS. A First Principle Model of Differential Ion Mobility: the Effect of Ion-Solvent Clustering. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2711-2725. [PMID: 31755046 DOI: 10.1007/s13361-019-02340-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The use of differential mobility spectrometry (DMS) as a separation tool prior to mass analysis has increased in popularity over the years. However, the fundamental principles behind the difference between high- and low-field mobility is still a matter of debate-especially regarding the strong impact of solvent molecules added to the gas phase in chemically modified DMS environments. In this contribution, we aim to present a thorough model for the determination of the ion mobility over a wide range of field strengths and subsequent calculation of DMS dispersion plots. Our model relies on first principle calculations only, incorporating the modeling of the "hard-sphere" mobility, the change in CCS with field strength, and the degree of clustering of solvent molecules to the ion. We show that all three factors have to be taken into account to qualitatively predict dispersion plots. In particular, type A behavior (i.e., strong clustering) in DMS can only be explained by a significant change of the mean cluster size with field strengths. The fact that our model correctly predicts trends between differently strong binding solvents, as well as the solvent concentration and the background gas temperature, highlights the importance of clustering for differential mobility.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany
| | - Jeff Crouse
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Femke-Jutta Schlüter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119, Wuppertal, Germany.
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
16
|
Historical, current and future developments of travelling wave ion mobility mass spectrometry: A personal perspective. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Domalain V, Hubert-Roux M, Quéguiner L, Fouque DJ, Arnoult E, Speybrouck D, Guillemont J, Afonso C. Ion mobility-mass spectrometry analysis of diarylquinoline diastereomers: Drugs used for tuberculosis treatment. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:291-299. [PMID: 30518251 DOI: 10.1177/1469066718813226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacterium tuberculosis infection results in more than two million deaths per year and is the leading cause of mortality in people infected with HIV. A new structural class of antimycobacterials, the diarylquinolines, has been synthesized and is being highly effective against both M. tuberculosis and multidrug-resistant tuberculosis. As diarylquinolines are biologically active only under their ( R,S) stereoisomeric form, it is essential to differentiate the stereoisomers ( R,S) and ( R,R). To achieve this, tandem mass spectrometry and ion mobility spectrometry-mass spectrometry have been performed with 10 diarylquinoline diastereomers couples. In this study, we investigated cationization with alkali metal cations and several ion mobility drift gases in order to obtain diastereomer differentiations. We have shown that diastereomers of the diarylquinolines family can be differentiated separately by tandem mass spectrometry and in mixture by ion mobility spectrometry-mass spectrometry. However, although the structure of each diastereomer is close, several behaviors could be observed concerning the cationization and the ion mobility spectrometry separation. The ion mobility spectrometry isomer separation efficiency is not easily predictable; it was however observed for all diastereomeric couples with a significant improvement of separation using alkali adducts compared to protonated molecules. With the use of drift gas with higher polarizability only an improvement of separation was obtained in a few cases. Finally, a good correlation of the experimental collision cross section (relative to three-dimensional structure of ions) and the theoretical collision cross section has been shown.
Collapse
Affiliation(s)
- Virginie Domalain
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Marie Hubert-Roux
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Laurence Quéguiner
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Dany Jd Fouque
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Eric Arnoult
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - David Speybrouck
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Jérôme Guillemont
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Carlos Afonso
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| |
Collapse
|
18
|
Chouinard CD, Cruzeiro VWD, Kemperman RH, Oranzi NR, Roitberg AE, Yost RA. Cation-Dependent Conformations in 25-Hydroxyvitamin D3-Cation Adducts Measured by Ion Mobility-Mass Spectrometry and Theoretical Modeling. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 432:1-8. [PMID: 30034270 PMCID: PMC6052799 DOI: 10.1016/j.ijms.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ion mobility-mass spectrometry is a useful tool in separation of biological isomers, including clinically relevant analytes such as 25-hydroxyvitamin D3 (25OHD3) and its epimer, 3-epi-25-hydroxyvitamin D3 (epi25OHD3). Previous research indicates that these epimers adopt different gas-phase sodiated monomer structures, either the "open" or "closed" conformer, which allow 25OHD3 to be readily resolved in mixtures. In the current work, alternative metal cation adducts are investigated for their relative effects on the ratio of "open" and "closed conformers. Alkali and alkaline earth metal adducts caused changes in the 25OHD3 conformer ratio, where the proportion of the "open" conformer generally increases with the size of the metal cation in a given group. As such, the ratio of the "open" conformer, which is unique to 25OHD3 and absent for its epimer, can be increased from approximately 1:1 for the sodiated monomer to greater than 8:1 for the barium adduct. Molecular modeling and energy calculations agree with the experimental results, indicating that the Gibbs free energy of conversion from the "closed" to the "open" conformation decreased with increasing cation size, correlating with the variation in ratio between the conformers. This work demonstrates the effect of cation adducts on gas-phase conformations of small, flexible molecules and offers an additional strategy for resolution of clinically relevant epimers.
Collapse
Affiliation(s)
- Christopher D. Chouinard
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
- Current Address: Biological Sciences Division, Pacific Northwest National Lab, Richland, WA 99352, United States
| | - Vinicius Wilian D. Cruzeiro
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
- CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil
| | - Robin H.J. Kemperman
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Nicholas R. Oranzi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL
| |
Collapse
|
19
|
Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Anal Chem 2018; 90:5139-5146. [DOI: 10.1021/acs.analchem.7b05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Javier Moreno
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Julian D. Hegemann
- Department of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Séverine Zirah
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Sylvie Rebuffat
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
20
|
Ion mobility in the pharmaceutical industry: an established biophysical technique or still niche? Curr Opin Chem Biol 2018; 42:147-159. [DOI: 10.1016/j.cbpa.2017.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
|
21
|
Chakraborty P, Baksi A, Mudedla SK, Nag A, Paramasivam G, Subramanian V, Pradeep T. Understanding proton capture and cation-induced dimerization of [Ag29(BDT)12]3−clusters by ion mobility mass spectrometry. Phys Chem Chem Phys 2018; 20:7593-7603. [DOI: 10.1039/c7cp08181b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a unique reaction of [Ag29(BDT)12]3−cluster with protons and dimerization of the cluster induced by alkali metal ions.
Collapse
Affiliation(s)
- Papri Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ananya Baksi
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Abhijit Nag
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ganesan Paramasivam
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
22
|
Jeanne Dit Fouque K, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Metal ions induced secondary structure rearrangements: mechanically interlocked lassovs.unthreaded branched-cyclic topoisomers. Analyst 2018; 143:2323-2333. [DOI: 10.1039/c8an00138c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change.
Collapse
Affiliation(s)
| | - Javier Moreno
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | | |
Collapse
|
23
|
Fouque KJD, Garabedian A, Porter J, Baird M, Pang X, Williams TD, Li L, Shvartsburg A, Fernandez-Lima F. Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 2017; 89:11787-11794. [PMID: 28982001 PMCID: PMC5677546 DOI: 10.1021/acs.analchem.7b03401] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite often minute concentrations in vivo, d-amino acid containing peptides (DAACPs) are crucial to many life processes. Standard proteomics protocols fail to detect them as d/l substitutions do not affect the peptide parent and fragment masses. The differences in fragment yields are often limited, obstructing the investigations of important but low abundance epimers in isomeric mixtures. Separation of d/l-peptides using ion mobility spectrometry (IMS) was impeded by small collision cross section differences (commonly ∼1%). Here, broad baseline separation of DAACPs with up to ∼30 residues employing trapped IMS with resolving power up to ∼340, followed by time-of-flight mass spectrometry is demonstrated. The d/l-pairs coeluting in one charge state were resolved in another, and epimers merged as protonated species were resolved upon metalation, effectively turning the charge state and cationization mode into extra separation dimensions. Linear quantification down to 0.25% proved the utility of high resolution IMS-MS for real samples with large interisomeric dynamic range. Very close relative mobilities found for DAACP pairs using traveling-wave IMS (TWIMS) with different ion sources and faster IMS separations showed the transferability of results across IMS platforms. Fragmentation of epimers can enhance their identification and further improve detection and quantification limits, and we demonstrate the advantages of online mobility separated collision-induced dissociation (CID) followed by high resolution mass spectrometry (TIMS-CID-MS) for epimer analysis.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Matthew Baird
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Xueqin Pang
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
24
|
Farenc M, Paupy B, Marceau S, Riches E, Afonso C, Giusti P. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2476-2482. [PMID: 28721674 DOI: 10.1007/s13361-017-1749-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mathilde Farenc
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, 76000, Rouen, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Benoit Paupy
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Sabrina Marceau
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Eleanor Riches
- Waters Corporation, Stamford Ave., Altrincham Rd, Wilmslow, SK9 4AX, UK
| | - Carlos Afonso
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, 76000, Rouen, France.
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France.
| | - Pierre Giusti
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| |
Collapse
|
25
|
Chouinard CD, Cruzeiro VWD, Beekman CR, Roitberg AE, Yost RA. Investigating Differences in Gas-Phase Conformations of 25-Hydroxyvitamin D3 Sodiated Epimers using Ion Mobility-Mass Spectrometry and Theoretical Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1497-1505. [PMID: 28417307 DOI: 10.1007/s13361-017-1673-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Drift tube ion mobility coupled with mass spectrometry was used to investigate the gas-phase structure of 25-hydroxyvitamin D3 (25OHD3) and D2 (25OHD2) epimers, and to evaluate its potential in rapid separation of these compounds. Experimental results revealed two distinct drift species for the 25OHD3 sodiated monomer, whereas only one of these conformations was observed for its epimer (epi25OHD3). The unique species allowed 25OHD3 to be readily distinguished, and the same pattern was observed for 25OHD2 epimers. Theoretical modeling of 25OHD3 epimers identified energetically stable gas-phase structures, indicating that both compounds may adopt a compact "closed" conformation, but that 25OHD3 may also adopt a slightly less energetically favorable "open" conformation that is not accessible to its epimer. Calculated theoretical collision cross-sections for these structures agreed with experimental results to <2%. Experimentation indicated that additional energy in the ESI source (i.e., increased temperature, spray voltage) affected the ratio of 25OHD3 conformations, with the less energetically favorable "open" conformation increasing in relative intensity. Finally, LC-IM-MS results yielded linear quantitation of 25OHD3, in the presence of the epimer interference, at biologically relevant concentrations. This study demonstrates that ion mobility can be used in tandem with theoretical modeling to determine structural differences that contribute to drift separation. These separation capabilities provide potential for rapid (<60 ms) identification of 25OHD3 and 25OHD2 in mixtures with their epimers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Vinícius Wilian D Cruzeiro
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | | | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Hong A, Lee HH, Heo CE, Cho Y, Kim S, Kang D, Kim HI. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:628-637. [PMID: 27981443 DOI: 10.1007/s13361-016-1559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Areum Hong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hong Hee Lee
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chae Eun Heo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yunju Cho
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
| | - Sunghwan Kim
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dukjin Kang
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Chouinard CD, Cruzeiro VWD, Roitberg AE, Yost RA. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:323-331. [PMID: 27914014 PMCID: PMC5478531 DOI: 10.1007/s13361-016-1525-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 05/11/2023]
Abstract
Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O - Na+ - OH-R' configuration, whereas trans-androsterone adopts a R=O - Na+ - O=R' configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS ~ 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Vinícius Wilian D Cruzeiro
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
28
|
Jami-Alahmadi Y, Linford BD, Fridgen TD. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M+ and (ProLeu)M+ (M = Alkali Metal). J Phys Chem B 2016; 120:13039-13046. [DOI: 10.1021/acs.jpcb.6b09588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yasaman Jami-Alahmadi
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Bryan D. Linford
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Travis D. Fridgen
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| |
Collapse
|
29
|
Lietz CB, Chen Z, Yun Son C, Pang X, Cui Q, Li L. Multiple gas-phase conformations of proline-containing peptides: is it always cis/trans isomerization? Analyst 2016; 141:4863-9. [PMID: 27434776 PMCID: PMC4972606 DOI: 10.1039/c5an00835b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) is often employed to look at the secondary, tertiary, and quaternary structures of naked peptides and proteins in the gas-phase. Recently, it has offered a unique glimpse into proline-containing peptides and their cis/trans Xxx-Pro isomers. An experimental "signature" has been identified wherein a proline-containing peptide has its Pro residues substituted with another amino acid and the presence or absence of conformations in the IM-MS spectra is observed. Despite the high probability that one could attribute these conformations to cis/trans isomers, it is also possible that cis/trans isomers are not the cause of the additional conformations in proline-containing peptides. However, the experimental evidence of such a system has not been demonstrated or reported. Herein, we present the IM-MS analysis of Neuropeptide Y's wild-type (WT) signal sequence and Leu7Pro (L7P) mutant. Although comparison of arrival times and collision cross-sections of [M + 4H](4+) ions yields the cis/trans "signature", molecular dynamics indicates that a cis-Pro7 is not very stable and that trans-Pro7 conformations of the same cross-section arise with equal frequency. We believe that this work further underscores the importance of theoretical calculations in IM-MS structural assignments.
Collapse
Affiliation(s)
- Christopher B Lietz
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Chang Yun Son
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Xueqin Pang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA. and School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
30
|
Deng L, Ibrahim YM, Baker ES, Aly NA, Hamid AM, Zhang X, Zheng X, Garimella SVB, Webb IK, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Smith RD. Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry. ChemistrySelect 2016; 1:2396-2399. [PMID: 28936476 DOI: 10.1002/slct.201600460] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems. Multi-omic analyses and the desire for comprehensive measurement coverage presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved resolution for biomolecular species, in conjunction with more effective ion utilization, and a basis for greatly improved characterization of very small sample sizes.
Collapse
Affiliation(s)
- Liulin Deng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Yehia M Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Erin S Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Noor A Aly
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Ahmed M Hamid
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Xing Zhang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Xueyun Zheng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Sandilya V B Garimella
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Ian K Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Spencer A Prost
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Jeremy A Sandoval
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Randolph V Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Gordon A Anderson
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Aleksey V Tolmachev
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| |
Collapse
|
31
|
Zhang H, Zheng D, Li HH, Wang H, Tan HS, Xu HX. Diagnostic filtering to screen polycyclic polyprenylated acylphloroglucinols from Garcinia oblongifolia by ultrahigh performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Anal Chim Acta 2016; 912:85-96. [PMID: 26920776 DOI: 10.1016/j.aca.2016.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/17/2016] [Indexed: 01/12/2023]
Abstract
A novel multistage MS approach, insource collision-induced dissociation (CID) combined with Time Aligned Parallel (TAP) fragmentation, was established to study the fragmentation behavior of polycyclic polyprenylated acylphloroglucinols (PPAPs), which could provide a more reliable fragmentation relationship between precursor and daughter ions. The diagnostic ions for different subtypes of PPAPs and their fragmentation behaviors have been summarized. Moreover, a new and reliable multidimensional analytical workflow that combines ultrahigh performance liquid chromatography (UHPLC), data-independent mass spectrometry (MS(E)), and tandem MS with ion mobility (IM) has been optimized and established for the analysis of PPAPs in the plant Garcinia oblongifolia by diagnostic filtering. Diagnostic fragment ions were used to selectively screen PPAPs from extracts, whereas IM coupled to MS was used to maximize the peak capacity. Under the optimized UHPLC-IM-MS(E) and UHPLC-IM-MS/MS method, 140 PPAPs were detected from the crude extract of G. oblongifolia, and 10 of them were unambiguously identified by comparing them to the reference compounds. Among those PPAPs, 7 pairs of coeluting isobaric PPAPs that were indistinguishable by conventional UHPLC-HRMS alone, were further resolved using UHPLC-IM-MS. It is anticipated that the proposed method will be extended to the rapid screening and characterization of the other targeted or untargeted compounds, especially these coeluting isomers in complex samples.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hao-Hao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hui Wang
- Solution Center, Waters Technologies Ltd. (Shanghai), Shanghai, 201203, PR China
| | - Hong-Sheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, PR China.
| |
Collapse
|
32
|
Bernier MC, Chamot-Rooke J, Wysocki VH. R vs. S fluoroproline ring substitution: trans/cis effects on the formation of b2 ions in gas-phase peptide fragmentation. Phys Chem Chem Phys 2016; 18:2202-9. [DOI: 10.1039/c5cp05155j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The b2 structures of model systems Val-Flp/flp-Ala and Tyr-Flp/flp-Ala were studied by action IRMPD spectroscopy to determine whether proline ring substitution guides ratios of diketopiperazine vs. oxazolone products.
Collapse
|
33
|
Czerwinska I, Far J, Kune C, Larriba-Andaluz C, Delaude L, De Pauw E. Structural analysis of ruthenium–arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT. Dalton Trans 2016; 45:6361-70. [DOI: 10.1039/c6dt00080k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrospray ionization of [RuCl2(p-cymeme)(PTA)] afforded a mixture of two molecular ions resulting from an in source oxidation of RuII into RuIII or from protonation of the 1,3,5-triaza-7-phosphaadamantane (PTA) ligand.
Collapse
Affiliation(s)
- Izabella Czerwinska
- Laboratory of Mass Spectrometry
- Department of Chemistry
- Allée de la Chimie 3
- Quartier Agora
- Université de Liège
| | - Johann Far
- Laboratory of Mass Spectrometry
- Department of Chemistry
- Allée de la Chimie 3
- Quartier Agora
- Université de Liège
| | - Christopher Kune
- Laboratory of Mass Spectrometry
- Department of Chemistry
- Allée de la Chimie 3
- Quartier Agora
- Université de Liège
| | | | - Lionel Delaude
- Laboratory of Catalysis
- Institut de Chimie (B6a)
- Allée du six Août 13
- Quartier Agora
- Université de Liège
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry
- Department of Chemistry
- Allée de la Chimie 3
- Quartier Agora
- Université de Liège
| |
Collapse
|
34
|
Boschmans J, Jacobs S, Williams JP, Palmer M, Richardson K, Giles K, Lapthorn C, Herrebout WA, Lemière F, Sobott F. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers. Analyst 2016; 141:4044-54. [DOI: 10.1039/c5an02456k] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Computational methods are employed to study the protomers in ESI-IM-MS.
Collapse
Affiliation(s)
- Jasper Boschmans
- Biomolecular & Analytical Mass Spectrometry group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| | - Sam Jacobs
- Molecular Spectroscopy group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| | | | | | | | | | - Cris Lapthorn
- Faculty of Engineering & Science
- University of Greenwich
- Chatham
- UK
| | - Wouter A. Herrebout
- Molecular Spectroscopy group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| | - Filip Lemière
- Biomolecular & Analytical Mass Spectrometry group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| |
Collapse
|
35
|
Rijs NJ, Weiske T, Schlangen M, Schwarz H. Effect of adduct formation with molecular nitrogen on the measured collisional cross sections of transition metal-1,10-phenanthroline complexes in traveling wave ion-mobility spectrometry: N2 is not always an "inert" buffer gas. Anal Chem 2015; 87:9769-76. [PMID: 26378338 DOI: 10.1021/acs.analchem.5b01985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M](+), (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal's interaction with nitrogen (and background water) in detail.
Collapse
Affiliation(s)
- Nicole J Rijs
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas Weiske
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
36
|
Causon TJ, Hann S. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. J Chromatogr A 2015; 1416:47-56. [DOI: 10.1016/j.chroma.2015.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|