1
|
Liu Y, Yao X, Fan C, Zhang G, Luo X, Qian Y. Microfabrication and lab-on-a-chip devices promote in vitromodeling of neural interfaces for neuroscience researches and preclinical applications. Biofabrication 2023; 16:012002. [PMID: 37832555 DOI: 10.1088/1758-5090/ad032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Neural tissues react to injuries through the orchestration of cellular reprogramming, generating specialized cells and activating gene expression that helps with tissue remodeling and homeostasis. Simplified biomimetic models are encouraged to amplify the physiological and morphological changes during neural regeneration at cellular and molecular levels. Recent years have witnessed growing interest in lab-on-a-chip technologies for the fabrication of neural interfaces. Neural system-on-a-chip devices are promisingin vitromicrophysiological platforms that replicate the key structural and functional characteristics of neural tissues. Microfluidics and microelectrode arrays are two fundamental techniques that are leveraged to address the need for microfabricated neural devices. In this review, we explore the innovative fabrication, mechano-physiological parameters, spatiotemporal control of neural cell cultures and chip-based neurogenesis. Although the high variability in different constructs, and the restriction in experimental and analytical access limit the real-life applications of microphysiological models, neural system-on-a-chip devices have gained considerable translatability for modeling neuropathies, drug screening and personalized therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Nanoporous gold microelectrode arrays using microchips: A highly sensitive and cost-effective platform for electroanalytical applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Ma X, Li F, Xie Z, Xue M, Zheng Z, Zhang X. Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. SOFT MATTER 2017; 13:3685-3689. [PMID: 28492664 DOI: 10.1039/c6sm02791a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By combining polymer pen lithography (PPL) patterning with in situ polymerization, we report a straightforward and bottom-up approach for bench-top fabrication of microelectrode arrays (MEAs) with well-controlled dimensions. The as-fabricated MEAs can be used to electrodeposit prussian blue in situ and work as a biosensor for H2O2 with a detection limit as low as 5 nM at a sensitivity of 0.7 A cm-2 M-1.
Collapse
Affiliation(s)
- Xinlei Ma
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 100083, Beijing, P. R. China.
| | | | | | | | | | | |
Collapse
|
5
|
Pitting corrosion and stress corrosion cracking study in high strength steels in alkaline media. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2956-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Ongaro M, Ugo P. Sensor Arrays: Arrays of Micro- and Nanoelectrodes. ENVIRONMENTAL ANALYSIS BY ELECTROCHEMICAL SENSORS AND BIOSENSORS 2014. [DOI: 10.1007/978-1-4939-0676-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Santhiago M, Wydallis JB, Kubota LT, Henry CS. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem 2013; 85:5233-9. [PMID: 23581428 PMCID: PMC3759157 DOI: 10.1021/ac400728y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry, and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (k(obs)) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 10(5) s(-1) M(-1). Using a microelectrode array, it was possible to reach a limit of detection of 4.8 μM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices.
Collapse
Affiliation(s)
- Murilo Santhiago
- Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalitica, Institute of Chemistry UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - John B. Wydallis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalitica, Institute of Chemistry UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Mignard L, Denoual M, Lavastre O, Floner D, Geneste F. Sampled voltammetry on an electrode array for the renewal of the electrode surface and the analytical solution during the analysis. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Fabrication of Hydrogen Peroxide Biosensors Based on Microelectrode Array of Silicon Dioxide Cavities. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lin Y, Trouillon R, Svensson MI, Keighron JD, Cans AS, Ewing AG. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. Anal Chem 2012; 84:2949-54. [PMID: 22339586 DOI: 10.1021/ac3000368] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10-50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (i.e. cold spots vs hot spots) were successfully detected with the CRMAs.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
de Santana PP, de Oliveira IMF, Piccin E. Evaluation of using xurography as a new technique for the fabrication of disposable gold electrodes with highly reproducible areas. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2011.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Guerrette JP, Percival SJ, Zhang B. Voltammetric behavior of gold nanotrench electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12218-12225. [PMID: 21866978 DOI: 10.1021/la2023743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the fabrication and electrochemical response of a gold nanoband electrode located at the bottom of a glass/epoxy nanotrench, hereafter referred to as a gold nanotrench electrode. Gold nanotrench electrodes of 12.5 and 40 nm in width with various depths from a few tens of nanometers to approximately 4 μm are fabricated and further characterized by cyclic voltammetry. The fabrication of a Au nanotrench electrode follows a simple electrochemical etching process in which a small AC signal is applied to an inlaid Au nanoband electrode submersed in a NaCl solution. The voltammetric behavior of a Au nanotrench electrode is characterized by a quasi-steady-state response at lower scan rates (e.g., <1 V/s for a 12.5-nm-wide electrode). We present an analytical expression for the quasi-steady-state diffusion-limited current of the nanotrench electrode based upon the analysis of the mass-transport resistance. Finite-element simulation of steady-state and transient voltammetric responses of the nanotrench electrodes provides additional insights for the analytical model. Peak-shaped transient voltammetric responses were observed at scan rates as low as 5 V/s for both inlaid and nanotrench electrodes. This result may suggest that the exposed area of the nanoband electrode is much greater than that expected from the fabrication of the inlaid bands. However, the extent to which this is seen is greatly decreased in the nanotrench electrode by a smoothing effect during etching. Our results confirm previous reports of excess overhanging metal and delamination crack contributing significantly to the shape and magnitude of the voltammetric response.
Collapse
Affiliation(s)
- Joshua P Guerrette
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
13
|
Li F, Xue M, Ma X, Zhang M, Cao T. Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing. Anal Chem 2011; 83:6426-30. [DOI: 10.1021/ac200939g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fengwang Li
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Mianqi Xue
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xinlei Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Tingbing Cao
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
14
|
|
15
|
Peinetti A, González G, Battaglini F. Modeling the Electrochemical Response of Mesoporous Materials Toward Its Application to Biomolecular Detection. ELECTROANAL 2010. [DOI: 10.1002/elan.200900572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Zhang Y, Wang H, Nie J, Zhang Y, Shen G, Yu R. Individually addressable microelectrode arrays fabricated with gold-coated pencil graphite particles for multiplexed and high sensitive impedance immunoassays. Biosens Bioelectron 2009; 25:34-40. [DOI: 10.1016/j.bios.2009.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
17
|
Huang XJ, O'Mahony AM, Compton RG. Microelectrode arrays for electrochemistry: approaches to fabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:776-788. [PMID: 19340821 DOI: 10.1002/smll.200801593] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microelectrode arrays have unique electrochemical properties such as small capacitive-charging currents, reduced iR drop, and steady-state diffusion currents. These properties enable the use of microelectrode arrays and have captured much interest in the field of electrochemistry. Techniques for the fabrication of such arrays are reviewed. The relative features and merits of different techniques are also discussed.
Collapse
Affiliation(s)
- Xing-Jiu Huang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory Oxford University, South Parks Road Oxford OX1 3QZ, UK
| | | | | |
Collapse
|
18
|
Lin Z, Takahashi Y, Murata T, Takeda M, Ino K, Shiku H, Matsue T. Electrochemical Gene-Function Analysis for Single Cells with Addressable Microelectrode/Microwell Arrays. Angew Chem Int Ed Engl 2009; 48:2044-6. [DOI: 10.1002/anie.200805743] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Lin Z, Takahashi Y, Murata T, Takeda M, Ino K, Shiku H, Matsue T. Electrochemical Gene-Function Analysis for Single Cells with Addressable Microelectrode/Microwell Arrays. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Lee CY, Bond AM. Evaluation of Levels of Defect Sites Present in Highly Ordered Pyrolytic Graphite Electrodes Using Capacitive and Faradaic Current Components Derived Simultaneously from Large-Amplitude Fourier Transformed ac Voltammetric Experiments. Anal Chem 2008; 81:584-94. [DOI: 10.1021/ac801732g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chong-Yong Lee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|