1
|
Lan Y, Zou Z, Yang Z. Single Cell mass spectrometry: Towards quantification of small molecules in individual cells. Trends Analyt Chem 2024; 174:117657. [PMID: 39391010 PMCID: PMC11465888 DOI: 10.1016/j.trac.2024.117657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Studying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis. In this review, the general development of single cell mass spectrometry (SCMS) field is covered. First, multiple existing SCMS techniques are described and compared. Next, the development of SCMS field is discussed in a chronological order. Last, the latest quantification studies on small molecules using SCMS have been described in detail.
Collapse
Affiliation(s)
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
2
|
Lan Y, Chen X, Yang Z. Quantification of Nitric Oxide in Single Cells Using the Single-Probe Mass Spectrometry Technique. Anal Chem 2023; 95:18871-18879. [PMID: 38092461 DOI: 10.1021/acs.analchem.3c04393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nitric oxide (NO) is a small molecule that plays important roles in biological systems and human diseases. The abundance of intracellular NO is tightly related to numerous biological processes. Due to cell heterogeneity, the intracellular NO amounts significantly vary from cell to cell, and therefore, any meaningful studies need to be conducted at the single-cell level. However, measuring NO in single cells is very challenging, primarily due to the extremely small size of single cells and reactive nature of NO. In the current studies, the quantitative reaction between NO and amlodipine, a compound containing the Hantzsch ester group, was performed in live cells. The product dehydro amlodipine was then detected by the Single-probe single-cell mass spectrometry technique to quantify NO in single cells. The experimental results indicated heterogeneous distributions of intracellular NO amounts in single cells with the existence of subpopulations.
Collapse
Affiliation(s)
- Yunpeng Lan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Xingxiu Chen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
4
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
5
|
Lewis HM, Gupta P, Saunders KDG, Briones S, von Gerichten J, Townsend PA, Velliou E, Beste DJV, Cexus O, Webb R, Bailey MJ. Nanocapillary sampling coupled to liquid chromatography mass spectrometry delivers single cell drug measurement and lipid fingerprints. Analyst 2023; 148:1041-1049. [PMID: 36723178 PMCID: PMC9969958 DOI: 10.1039/d2an01732f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
This work describes the development of a new approach to measure drug levels and lipid fingerprints in single living mammalian cells. Nanocapillary sampling is an approach that enables the selection and isolation of single living cells under microscope observation. Here, live single cell nanocapillary sampling is coupled to liquid chromatography for the first time. This allows molecular species to be separated prior to ionisation and improves measurement precision of drug analytes. The efficiency of transferring analytes from the sampling capillary into a vial was optimised in this work. The analysis was carried out using standard flow liquid chromatography coupled to widely available mass spectrometry instrumentation, highlighting opportunities for widespread adoption. The method was applied to 30 living cells, revealing cell-to-cell heterogeneity in the uptake of different drug molecules. Using this system, we detected 14-158 lipid features per single cell, revealing the association between bedaquiline uptake and lipid fingerprints.
Collapse
Affiliation(s)
- Holly-May Lewis
- Department of Chemistry, University of Surrey, Guildford, UK.
| | - Priyanka Gupta
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Centre for 3D Models of Health and Disease, University College London - Division of Surgery and Interventional Science, London, UK
| | | | - Shazneil Briones
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Paul A Townsend
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eirini Velliou
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Centre for 3D Models of Health and Disease, University College London - Division of Surgery and Interventional Science, London, UK
| | - Dany J V Beste
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Olivier Cexus
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Roger Webb
- Ion Beam Centre, University of Surrey, Guildford, UK
| | | |
Collapse
|
6
|
Driver R, Mishra S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
8
|
De La Toba EA, Bell SE, Romanova EV, Sweedler JV. Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:83-106. [PMID: 35324254 DOI: 10.1146/annurev-anchem-061020-022048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.
Collapse
Affiliation(s)
- Eduardo A De La Toba
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sara E Bell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
AlMasoud N, Muhamadali H, Chisanga M, AlRabiah H, Lima CA, Goodacre R. Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. Analyst 2021; 146:770-788. [DOI: 10.1039/d0an01482f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review compares and contrasts MALDI-MS, FT-IR spectroscopy and Raman spectroscopy for whole organism fingerprinting and bacterial typing.
Collapse
Affiliation(s)
- Najla AlMasoud
- Department of Chemistry
- College of Science
- Princess Nourah bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| | - Malama Chisanga
- School of Chemistry and Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Cassio A. Lima
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| |
Collapse
|
10
|
Zheng Y, Liu Z, Xing J, Zheng Z, Pi Z, Song F, Liu S. In situ analysis of single cell and biological samples with rGO-Cu functional probe ESI-MS spectrometry. Talanta 2020; 211:120751. [DOI: 10.1016/j.talanta.2020.120751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
11
|
Fang Z, Wang R, Zhao H, Yao H, Ouyang J, Zhang X. Mannose Promotes Metabolic Discrimination of Osteosarcoma Cells at Single-Cell Level by Mass Spectrometry. Anal Chem 2020; 92:2690-2696. [DOI: 10.1021/acs.analchem.9b04773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhuyin Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruihua Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hansen Zhao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huan Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinrong Zhang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Pan N, Standke SJ, Kothapalli NR, Sun M, Bensen RC, Burgett AWG, Yang Z. Quantification of Drug Molecules in Live Single Cells Using the Single-Probe Mass Spectrometry Technique. Anal Chem 2019; 91:9018-9024. [PMID: 31246408 PMCID: PMC6677389 DOI: 10.1021/acs.analchem.9b01311] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analyzing cellular constituents on the single-cell level through mass spectrometry (MS) allows for a wide range of compounds to be studied simultaneously. However, there is a need for quantitative single-cell mass spectrometry (qSCMS) methods to fully characterize drug efficacy from individual cells within cell populations. In this study, qSCMS experiments were carried out using the Single-probe MS technique. The method was successfully used to perform rapid absolute quantifications of the anticancer drug irinotecan in individual mammalian cancer cells under ambient conditions in real time. Traditional liquid chromatography/mass spectrometry (LC/MS) quantifications of irinotecan in cell lysate samples were used to compare the results from Single-probe qSCMS. This technique showcases heterogeneity of drug efficacy on the single-cell level.
Collapse
Affiliation(s)
- Ning Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shawna J. Standke
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Naga Rama Kothapalli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mei Sun
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ryan C. Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anthony W. G. Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
13
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
14
|
Feng J, Zhang X, Huang L, Yao H, Yang C, Ma X, Zhang S, Zhang X. Quantitation of Glucose-phosphate in Single Cells by Microwell-Based Nanoliter Droplet Microextraction and Mass Spectrometry. Anal Chem 2019; 91:5613-5620. [DOI: 10.1021/acs.analchem.8b05226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaxin Feng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaochao Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Huan Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chengdui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
16
|
Zhao JB, Zhang F, Guo YL. Quantitative Analysis of Metabolites at the Single-Cell Level by Hydrogen Flame Desorption Ionization Mass Spectrometry. Anal Chem 2019; 91:2752-2758. [DOI: 10.1021/acs.analchem.8b04422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun-Bo Zhao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fang Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
17
|
Mohammed Y, Pan J, Zhang S, Han J, Borchers CH. ExSTA: External Standard Addition Method for Accurate High-Throughput Quantitation in Targeted Proteomics Experiments. Proteomics Clin Appl 2018; 12:1600180. [PMID: 28895300 PMCID: PMC6084352 DOI: 10.1002/prca.201600180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Targeted proteomics using MRM with stable-isotope-labeled internal-standard (SIS) peptides is the current method of choice for protein quantitation in complex biological matrices. Better quantitation can be achieved with the internal standard-addition method, where successive increments of synthesized natural form (NAT) of the endogenous analyte are added to each sample, a response curve is generated, and the endogenous concentration is determined at the x-intercept. Internal NAT-addition, however, requires multiple analyses of each sample, resulting in increased sample consumption and analysis time. EXPERIMENTAL DESIGN To compare the following three methods, an MRM assay for 34 high-to-moderate abundance human plasma proteins is used: classical internal SIS-addition, internal NAT-addition, and external NAT-addition-generated in buffer using NAT and SIS peptides. Using endogenous-free chicken plasma, the accuracy is also evaluated. RESULTS The internal NAT-addition outperforms the other two in precision and accuracy. However, the curves derived by internal vs. external NAT-addition differ by only ≈3.8% in slope, providing comparable accuracies and precision with good CV values. CONCLUSIONS AND CLINICAL RELEVANCE While the internal NAT-addition method may be "ideal", this new external NAT-addition can be used to determine the concentration of high-to-moderate abundance endogenous plasma proteins, providing a robust and cost-effective alternative for clinical analyses or other high-throughput applications.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenthe Netherlands
| | - Jingxi Pan
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
| | - Suping Zhang
- MRM Proteomics Inc.VictoriaBritish ColumbiaCanada
| | - Jun Han
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
| | - Christoph H. Borchers
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
- University of VictoriaDepartment of Biochemistry and MicrobiologyVictoriaBCCanada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill UniversityMontrealQuebecCanada
- Proteomics CentreSegal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
18
|
Yoon S, Park S, Kim MS, Lee CY. Concomitant desalting and concentration of neuropeptides on a donut-shaped surface pattern for MALDI mass spectrometry. Chem Commun (Camb) 2018; 54:5688-5691. [DOI: 10.1039/c8cc02168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a functional surface pattern that desalts and concentrates a highly saline solution of neuropeptides in a single step.
Collapse
Affiliation(s)
- Sook Yoon
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Sanghwan Park
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Min Sun Kim
- Scientific Instruments Reliability Assessment Center
- Korea Basic Science Institute
- Daejeon 34133
- Republic of Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
- School of Life Sciences
| |
Collapse
|
19
|
Huang L, Michael SA, Chen Y, Wu H. Current Advances in Highly Multiplexed Antibody-Based Single-Cell Proteomic Measurements. Chem Asian J 2017; 12:1680-1691. [PMID: 28493387 DOI: 10.1002/asia.201700404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Indexed: 12/29/2022]
Abstract
Single-cell measurements have played a critical role in revealing the complex signaling dynamics and heterogeneity present in cells, but there is still much to learn. Measuring samples from bulk populations of cells often masks the information and dynamics present in subsets of cells. Common single-cell protein studies rely on fluorescent microscopy and flow cytometry but are limited in multiplexing ability owing to spectral overlap. Recently, technology advancements in single-cell proteomics have allowed highly multiplexed measurement of multiple parameters simultaneously by using barcoded microfluidic enzyme-linked immunosorbent assays and mass cytometry techniques. In this review, we will describe recent work around multiparameter single-cell protein measurements and critically analyze the techniques.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sean A Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Yang Y, Huang Y, Wu J, Liu N, Deng J, Luan T. Single-cell analysis by ambient mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Comi TJ, Do TD, Rubakhin SS, Sweedler JV. Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. J Am Chem Soc 2017; 139:3920-3929. [PMID: 28135079 PMCID: PMC5364434 DOI: 10.1021/jacs.6b12822] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 02/06/2023]
Abstract
The chemical differences between individual cells within large cellular populations provide unique information on organisms' homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements.
Collapse
Affiliation(s)
- Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Bergman HM, Lanekoff I. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS. Analyst 2017; 142:3639-3647. [DOI: 10.1039/c7an00885f] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nano-DESI MS enables sensitive molecular profiling and quantification of endogenous species in single cells in a higher throughput manner.
Collapse
|
23
|
Niwayama S, Zabet-Moghaddam M, Kurono S, Kattanguru P, Shaikh AL. Synthesis of d-labeled and unlabeled ethyl succinic anhydrides and application to quantitative analysis of peptides by isotope differential mass spectrometry. Bioorg Med Chem Lett 2016; 26:5073-5077. [PMID: 27624079 DOI: 10.1016/j.bmcl.2016.08.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
Abstract
Ethyl succinic anhydride and its d5-labeled version have been synthesized and applied to quantitative analysis of peptides in combination with MALDI or ESI mass spectrometry. These modifiers react with amino groups in the N-termini and lysine side chains in proteins, and therefore the combination of these modifiers was shown to be a useful tool for quantification of peptides and hence for proteomics research.
Collapse
Affiliation(s)
- Satomi Niwayama
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan.
| | - Masoud Zabet-Moghaddam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sadamu Kurono
- Joint Research Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory and Specialty Chemicals Division, Wako Pure Chemical Industries, Ltd, 3-1-2 Doshomachi, Chuo-ku, Osaka, Osaka 540-8605, Japan
| | - Pullaiah Kattanguru
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan
| | - Aarif L Shaikh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
24
|
Sun L, Dubiak KM, Peuchen EH, Zhang Z, Zhu G, Huber PW, Dovichi NJ. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content. Anal Chem 2016; 88:6653-7. [PMID: 27314579 DOI: 10.1021/acs.analchem.6b01921] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Yang M, Nelson R, Ros A. Toward Analysis of Proteins in Single Cells: A Quantitative Approach Employing Isobaric Tags with MALDI Mass Spectrometry Realized with a Microfluidic Platform. Anal Chem 2016; 88:6672-9. [PMID: 27257853 DOI: 10.1021/acs.analchem.5b03419] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein identification and quantification in individual cells is essential to understand biological processes such as those involved in cell apoptosis, cancer, biomarker discovery, disease diagnostics, pathology, or therapy. Compared with present single cell genome analysis, probing the protein content of single cells has been hampered by the lack of a protein amplification technique. Here, we report the development of a quantitative mass spectrometric approach combined with microfluidic technology reaching the detection sensitivity of high abundant proteins in single cells. A microfluidic platform with a series of chambers and valves, ensuring a set of defined wells for absolute quantification of targeted proteins, was developed and combined with isotopic labeling strategies employing isobaric tags for relative and absolute quantitation (iTRAQ)-labels. To this aim, we adapted iTRAQ labeling to an on-chip protocol. Simultaneous protein digestion and labeling performed on the microfluidic platform rendered the labeling strategy compatible with all necessary manipulation steps on-chip, including the matrix delivery for MALDI-TOF analysis. We demonstrate this approach with the apoptosis related protein Bcl-2 and quantitatively assess the number of Bcl-2 molecules detected. We anticipate that this approach will eventually allow quantification of protein expression on the single cell level.
Collapse
Affiliation(s)
- Mian Yang
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Randall Nelson
- Molecular Biomarkers Laboratory, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
26
|
Yuan F, Zhang DW, Liu JX, Zhou YL, Zhang XX. Phytochemical profiling in single plant cell by high performance liquid chromatography-mass spectrometry. Analyst 2016; 141:6338-6343. [DOI: 10.1039/c6an01539e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and universal method was successfully established to profile and identify bioactive phytochemicals and common metabolites in the single plant cell by using high performance liquid chromatography coupled with high resolution electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - De-Wen Zhang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- China Academy of Engineering Physics
| | - Jing-Xin Liu
- Petrochina Research Institute
- Petrochina Company Limited
- Beijing
- China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
27
|
Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc 2015. [PMID: 26313480 DOI: 10.1038/nprot.2015-084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Live single-cell mass spectrometry (live MS) provides a mass spectrum that shows thousands of metabolite peaks from a single live plant cell within minutes. By using an optical microscope, a cell is chosen for analysis and a metal-coated nanospray microcapillary tip is used to remove the cell's contents. After adding a microliter of ionization solvent to the opposite end of the tip, the trapped contents are directly fed into the mass spectrometer by applying a high voltage between the tip and the inlet port of the spectrometer to induce nanospray ionization. Proteins are not detected because of insufficient sensitivity. Metabolite peaks are identified by exact mass or tandem mass spectrometry (MS/MS) analysis, and isomers can be separated by combining live MS with ion-mobility separation. By using this approach, spectra can be acquired in 10 min. In combination with metabolic maps and/or molecular databases, the data can be annotated into metabolic pathways; the data analysis takes 30 min to 4 h, depending on the MS/MS data availability from databases. This method enables the analysis of a number of metabolites from a single cell with rapid sampling at sub-attomolar-level sensitivity.
Collapse
Affiliation(s)
- Takashi Fujii
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Shuichi Matsuda
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Mónica Lorenzo Tejedor
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Esaki
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Iwao Sakane
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Hajime Mizuno
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Naohiro Tsuyama
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - Tsutomu Masujima
- Laboratory for Molecular Medicine and Devices, Graduated School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Single Cell Mass Spectrometry, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| |
Collapse
|
28
|
Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc 2015; 10:1445-56. [DOI: 10.1038/nprot.2015.084] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Mainz ER, Dobes NC, Allbritton NL. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells. Anal Chem 2015; 87:7987-95. [PMID: 26171808 PMCID: PMC6026012 DOI: 10.1021/acs.analchem.5b01929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells.
Collapse
Affiliation(s)
- Emilie R. Mainz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, US
| |
Collapse
|
30
|
Ong TH, Kissick DJ, Jansson ET, Comi TJ, Romanova EV, Rubakhin SS, Sweedler JV. Classification of Large Cellular Populations and Discovery of Rare Cells Using Single Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2015; 87:7036-42. [PMID: 26076060 PMCID: PMC4511976 DOI: 10.1021/acs.analchem.5b01557] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell-to-cell variability and functional heterogeneity are integral features of multicellular organisms. Chemical classification of cells into cell type is important for understanding cellular specialization as well as organismal function and organization. Assays to elucidate these chemical variations are best performed with single cell samples because tissue homogenates average the biochemical composition of many different cells and oftentimes include extracellular components. Several single cell microanalysis techniques have been developed but tend to be low throughput or require preselection of molecular probes that limit the information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular populations.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Kissick
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik T Jansson
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Konop CJ, Knickelbine JJ, Sygulla MS, Vestling MM, Stretton AOW. Different neuropeptides are expressed in different functional subsets of cholinergic excitatory motorneurons in the nematode Ascaris suum. ACS Chem Neurosci 2015; 6:855-70. [PMID: 25812635 DOI: 10.1021/cn5003623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides are known to have dramatic effects on neurons and synapses; however, despite extensive studies of the motorneurons in the parasitic nematode Ascaris suum, their peptide content had not yet been described. We determined the peptide content of single excitatory motorneurons by mass spectrometry and tandem mass spectrometry. There are two subsets of ventral cord excitatory motorneurons, each with neuromuscular output either anterior or posterior to their cell body, mediating forward or backward locomotion, respectively. Strikingly, the two sets of neurons contain different neuropeptides, with AF9 and six novel peptides (As-NLP-21.1-6) in anterior projectors, and the six afp-1 peptides in addition to AF2 in posterior projectors. In situ hybridization confirmed the expression of these peptides, validating the integrity of the dissection technique. This work identifies new components of the functional behavioral circuit, as well as potential targets for antiparasitic drug development.
Collapse
Affiliation(s)
- Christopher J. Konop
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jennifer J. Knickelbine
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Molly S. Sygulla
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martha M. Vestling
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Antony O. W. Stretton
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
33
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
34
|
Ong TH, Tillmaand EG, Makurath M, Rubakhin SS, Sweedler JV. Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:732-40. [PMID: 25617659 DOI: 10.1016/j.bbapap.2015.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, and spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample's metabolome and peptidome, and improves individual analyte characterization/identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emily G Tillmaand
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Monika Makurath
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
35
|
Mainini V, Lalowski M, Gotsopoulos A, Bitsika V, Baumann M, Magni F. MALDI-imaging mass spectrometry on tissues. Methods Mol Biol 2015; 1243:139-64. [PMID: 25384744 DOI: 10.1007/978-1-4939-1872-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-profiling and imaging mass spectrometry (MSI) are promising technologies for measuring hundreds of different molecules directly on tissues. For instance, small molecules, drugs and their metabolites, endogenous lipids, carbohydrates and complex peptides/proteins can be measured at the same time. In the most advanced instruments, it is achieved without significant disruption of sample integrity. MSI is a unique approach for assessing the spatial distribution of molecules using graphical multidimensional maps of their constituent analytes, which may for instance be correlated with histopathological alterations in patient tissues. MALDI-TOF-MSI technology has been implemented in hospitals of several countries, where it is routinely used for quick pathogen(s) identification, a task formerly accomplished by laborious and expensive DNA/RNA-based PCR (polymerase chain reaction) screening.In this chapter, we describe how MSI is performed, what is required from the researcher, the instrument vendors and finally what can be achieved with MSI. We restrict our descriptions only to MALDI-MSI although several other MS techniques of ionization can easily be linked to MSI.
Collapse
Affiliation(s)
- Veronica Mainini
- Department of Health Sciences, University Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | | | | | | | | | | |
Collapse
|
36
|
De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:812-26. [PMID: 25528324 DOI: 10.1016/j.bbapap.2014.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Wouter De Haes
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Elien Van Sinay
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Giel Detienne
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Lanni EJ, Dunham SJB, Nemes P, Rubakhin SS, Sweedler JV. Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1897-907. [PMID: 25183225 DOI: 10.1007/s13361-014-0978-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
We describe a hybrid MALDI/C(60)-SIMS Q-TOF mass spectrometer and corresponding sample preparation protocols to image intact biomolecules and their fragments in mammalian spinal cord, individual invertebrate neurons, and cultured neuronal networks. A lateral spatial resolution of 10 μm was demonstrated, with further improvement feasible to 1 μm, sufficient to resolve cell outgrowth and interconnections in neuronal networks. The high mass resolution (>13,000 FWHM) and tandem mass spectrometry capability of this hybrid instrument enabled the confident identification of cellular metabolites. Sublimation of a suitable matrix, 2,5-dihydroxybenzoic acid, significantly enhanced the ion signal intensity for intact glycerophospholipid ions from mammalian nervous tissue, facilitating the acquisition of high-quality ion images for low-abundance biomolecules. These results illustrate that the combination of C60-SIMS and MALDI mass spectrometry offers particular benefits for studies that require the imaging of intact biomolecules with high spatial and mass resolution, such as investigations of single cells, subcellular organelles, and communities of cells.
Collapse
Affiliation(s)
- Eric J Lanni
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Unprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level. In addition, we provide an overview of tools that are well suited for following biological responses to defined perturbations with single-cell resolution. Techniques to analyze and manipulate single cells through soluble and chemical ligands, the microenvironment, and cell-cell interactions are provided. For each of these topics, we highlight the biological motivation, applications, methods, recent advances, and opportunities for improvement. The toolbox presented in this review can function as a starting point for the design of single-cell experiments.
Collapse
|
39
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Zhang W, Long J, Zhang C, Cai N, Liu Z, Wang Y, Wang X, Chen P, Liang S. A method combining SPITC and ¹⁸O labeling for simultaneous protein identification and relative quantification. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:400-408. [PMID: 24809901 DOI: 10.1002/jms.3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The relative quantification and identification of proteins by matrix-assisted laser desorption ionization time-of-flight MS is very important in /MS is very important in protein research and is usually conducted separately. Chemical N-terminal derivatization with 4-sulphophenyl isothiocyanate facilitates de novo sequencing analysis and accurate protein identification, while (18)O labeling is simple, specific and widely applicable among the isotopic labeling methods used for relative quantification. In the present study, a method combining 4-sulphophenyl isothiocyanate derivatization with (18)O isotopic labeling was established to identify and quantify proteins simultaneously in one experiment. Reaction conditions were first optimized using a standard peptide (fibrin peptide) and tryptic peptides from the model protein (bovine serum albumin). Under the optimized conditions, these two independent labeling steps show good compatibility, and the linear relativity of quantification within the ten times dynamic range was stable as revealed by correlation coefficient analysis (R(2) value = 0.998); moreover, precursor peaks in MS/MS spectrum could provide accurate quantitative information, which is usually acquired from MS spectrum, enabling protein identification and quantification in a single MS/MS spectrum. Next, this method was applied to native peptides isolated from spider venoms. As expected, the de novo sequencing results of each peptide matched with the known sequence precisely, and the measured quantitative ratio of each peptide corresponded well with the theoretical ratio. Finally, complex protein mixtures of spider venoms from male and female species with unknown genome information were analyzed. Differentially expressed proteins were successfully identified, and their quantitative information was also accessed. Taken together, this protein identification and quantification method is simple, reliable and efficient, which has a good potential in the exploration of peptides/proteins from species with unknown genome.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Maki AE, Morris KA, Catherman K, Chen X, Hatcher NG, Gold PE, Sweedler JV. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacol Res Perspect 2014; 2:e00037. [PMID: 24855564 PMCID: PMC4024393 DOI: 10.1002/prp2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.
Collapse
Affiliation(s)
- Agatha E Maki
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kenneth A Morris
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kasia Catherman
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Xian Chen
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Nathan G Hatcher
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Paul E Gold
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Jonathan V Sweedler
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| |
Collapse
|
42
|
Gong X, Zhao Y, Cai S, Fu S, Yang C, Zhang S, Zhang X. Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal Chem 2014; 86:3809-16. [PMID: 24641101 DOI: 10.1021/ac500882e] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular analysis at cellular and subcellular levels, whether on selected molecules or at the metabolomics scale, is still a challenge now. Here we propose a method based on probe ESI mass spectrometry (PESI-MS) for single cell analysis. Detection of metabolites at cellular and subcellular levels was successfully achieved. In our work, tungsten probes with a tip diameter of about 1 μm were directly inserted into live cells to enrich metabolites. Then the enriched metabolites were directly desorbed/ionized from the tip of the probe for mass spectrometry (MS) detection. The direct desorption/ionization of the enriched metabolites from the tip of the probe greatly improved the sensitivity by a factor of about 30 fold compared to those methods that eluted the enriched analytes into a liquid phase for subsequent MS detection. We applied the PESI-MS to the detection of metabolites in single Allium cepa cells. Different kinds of metabolites, including 6 fructans, 4 lipids, and 8 flavone derivatives in single cells, have been successfully detected. Significant metabolite diversity was observed among different cells types of A. cepa bulb and different subcellular compartments of the same cell. We found that the inner epidermal cells had about 20 fold more fructans than the outer epidermal cells, while the outer epidermal cells had more lipids. We expected that PESI-MS might be a candidate in the future studies of single cell "omics".
Collapse
Affiliation(s)
- Xiaoyun Gong
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing China
| | | | | | | | | | | | | |
Collapse
|
43
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
44
|
Salisbury JP, Boggio KJ, Hsu YWA, Quijada J, Sivachenko A, Gloeckner G, Kowalski PJ, Easterling ML, Rosbash M, Agar JN. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Mol Brain 2013; 6:60. [PMID: 24373546 PMCID: PMC4022047 DOI: 10.1186/1756-6606-6-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. RESULTS Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. CONCLUSIONS Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeffrey N Agar
- Depts of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Wu J, Tzanakakis ES. Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnol Adv 2013; 31:1047-62. [PMID: 24035899 DOI: 10.1016/j.biotechadv.2013.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 12/26/2022]
Abstract
Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives.
Collapse
Affiliation(s)
- Jincheng Wu
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | |
Collapse
|
46
|
Kadakkuzha BM, Puthanveettil SV. Genomics and proteomics in solving brain complexity. MOLECULAR BIOSYSTEMS 2013; 9:1807-21. [PMID: 23615871 PMCID: PMC6425491 DOI: 10.1039/c3mb25391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human brain is extraordinarily complex, composed of billions of neurons and trillions of synaptic connections. Neurons are organized into circuit assemblies that are modulated by specific interneurons and non-neuronal cells, such as glia and astrocytes. Data on human genome sequences predicts that each of these cells in the human brain has the potential of expressing ∼20 000 protein coding genes and tens of thousands of noncoding RNAs. A major challenge in neuroscience is to determine (1) how individual neurons and circuitry utilize this potential during development and maturation of the nervous system, and for higher brain functions such as cognition, and (2) how this potential is altered in neurological and psychiatric disorders. In this review, we will discuss how recent advances in next generation sequencing, proteomics and bioinformatics have transformed our understanding of gene expression and the functions of neural circuitry, memory storage, and disorders of cognition.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
47
|
Romanova EV, Dowd SE, Sweedler JV. Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 2013; 17:801-8. [PMID: 23790312 DOI: 10.1016/j.cbpa.2013.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
The mass spectrometry-based 'omics' sub-discipline that focuses on comprehensive, often exploratory, analyses of endogenous peptides involved in cell-to-cell communication is oftentimes referred to as peptidomics. Although the progress in bioanalytical technology development for peptide discovery has been tremendous, perhaps the largest advances have involved robust quantitative mass spectrometric approaches and data mining algorithms. These efforts have accelerated the discovery and validation of biomarkers, functionally important posttranslational modifications, and unexpected molecular interactions, information that aids drug development. In this article we outline the current approaches used in quantitative peptidomics and the technical challenges that stimulate new advances in the field, while also reviewing the newest literature on functional characterizations of endogenous peptides using quantitative mass spectrometry.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
48
|
Jahn M, Seifert J, von Bergen M, Schmid A, Bühler B, Müller S. Subpopulation-proteomics in prokaryotic populations. Curr Opin Biotechnol 2013; 24:79-87. [DOI: 10.1016/j.copbio.2012.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
49
|
Targeted single-cell microchemical analysis: MS-based peptidomics of individual paraformaldehyde-fixed and immunolabeled neurons. ACTA ACUST UNITED AC 2012; 19:1010-9. [PMID: 22921068 DOI: 10.1016/j.chembiol.2012.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/20/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022]
Abstract
Pinpointing a specific cell from within a relatively uniform cell population to determine its chemical content presents a challenging bioanalytical task. Immunocytochemistry is the classical method used to localize specific molecules and, hence, selected cells. Mass spectrometry also probes endogenous molecules such as neuropeptides within a cell. Here, these two approaches are hyphenated to allow microchemical analysis of immunocytochemical-selected peptidergic neurons. This two-step strategy utilizes antibody-based localization of cells containing selected biomarkers to isolate the cell(s) of interest, followed by peptidomic analysis via mass spectrometry. Applicable to a broad range of analyte and cell types, the strategy was used to successfully profile neuropeptides from individual immunostained insect neurons stored for up to 2 weeks as well as from tissues preserved for 42 weeks.
Collapse
|
50
|
Progress toward single cell metabolomics. Curr Opin Biotechnol 2012; 24:95-104. [PMID: 23246232 DOI: 10.1016/j.copbio.2012.10.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
The metabolome refers to the entire set of small molecules, or metabolites, within a biological sample. These molecules are involved in many fundamental intracellular functions and reflect the cell's physiological condition. The ability to detect and identify metabolites and determine and monitor their amounts at the single cell level enables an exciting range of studies of biological variation and functional heterogeneity between cells, even within a presumably homogenous cell population. Significant progress has been made in the development and application of bioanalytical tools for single cell metabolomics based on mass spectrometry, microfluidics, and capillary separations. Remarkable improvements in the sensitivity, specificity, and throughput of these approaches enable investigation of multiple metabolites simultaneously in a range of individual cell samples.
Collapse
|