1
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Bae YI, Hwang I, Kim I, Kim K, Park JW. Force Measurement for the Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn 2+ Studied with Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11884-11892. [PMID: 28946747 DOI: 10.1021/acs.langmuir.7b02168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Force spectroscopy with atomic force microscopy (AFM) revealed that cucurbit[7]uril (CB[7]) strongly binds to a mica surface in the presence of cations. Indeed, Zn2+ was observed to facilitate the self-assembly of CB[7] on the mica surface, whereas monocations, such as Na+, were less effective. The progression of the process and the cation-mediated self-assembled monolayer were characterized using AFM, and the observed height of the layer agrees well with the calculated CB[7] value (9.1 Å). We utilized force-based AFM to further study the interaction of CB[7] with guest molecules. To this end, CB[7] was immobilized on a glass substrate, and aminomethylferrocene (am-Fc) was conjugated onto an AFM tip. The single-molecule interaction between CB[7] and am-Fc was monitored by collecting the unbinding force curves. The force histogram showed single ruptures and a unimodal distribution, and the most probable unbinding force value was 101 pN in deionized water and 86 pN in phosphate-buffered saline buffer. The results indicate that the unbinding force was larger than that of streptavidin-biotin measured under the same conditions, whereas the dissociation constant was smaller by 1 order of magnitude (0.012 s-1 vs 0.13 s-1). Furthermore, a high-resolution adhesion force map showed a part of the CB[7] cavities on the surface.
Collapse
Affiliation(s)
- Young-In Bae
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ilha Hwang
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikjin Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Kimoon Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
3
|
Koo H, Park I, Lee Y, Kim HJ, Jung JH, Lee JH, Kim Y, Kim JH, Park JW. Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy. J Am Chem Soc 2016; 138:11664-71. [PMID: 27529574 DOI: 10.1021/jacs.6b05048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM). A hybrid binding domain (HBD)-tethered tip enabled mature miRNAs, but not premature miRNAs, to be located individually on an adhesion force map. By scanning several sections of a micrometer-sized DNA spot, we were able to quantify the copy number of miR-134 in a single neuron and demonstrate that the expression was increased upon cell activation. Moreover, we visualized individual miR-134s on fixed neurons after membrane removal and observed 2-4 miR-134s in the area of 1.0 × 1.0 μm(2) of soma. The number increased to 8-14 in stimulated neurons, and this change matches the ensemble-averaged increase in copy number. These findings indicate that miRNAs can be reliably quantified at the single cell level with AFM and that their distribution can be mapped at nanometric lateral resolution without modification or amplification. Furthermore, the analysis of miRNAs, mRNAs, and proteins in the same sample or region by scanning sequentially with different AFM tips would let us accurately understand the post-transcriptional regulation of biological processes.
Collapse
Affiliation(s)
- Hyunseo Koo
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikbum Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Yoonhee Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Hyun Jin Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Jung Hoon Jung
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joo Han Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Youngkyu Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joung-Hun Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
4
|
Xie Y, Wang J, Feng Y. Characterization of Recognition Events between Proteins on a Single Molecule Level with Atomic Force Microscopy. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b03922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Xie
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianhua Wang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yonglai Feng
- Exposure and Biomonitoring
Division, Environmental Health Science and Research Bureau, Health
Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
5
|
Banerjee S, Rakshit T, Sett S, Mukhopadhyay R. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy. J Phys Chem B 2015; 119:13278-87. [PMID: 26419288 DOI: 10.1021/acs.jpcb.5b07795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.
Collapse
Affiliation(s)
- S Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - T Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - S Sett
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - R Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
6
|
Kim DH, Lee JE, Xu ZY, Geem KR, Kwon Y, Park JW, Hwang I. Cytosolic targeting factor AKR2A captures chloroplast outer membrane-localized client proteins at the ribosome during translation. Nat Commun 2015; 6:6843. [PMID: 25880450 DOI: 10.1038/ncomms7843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/04/2015] [Indexed: 01/30/2023] Open
Abstract
In eukaryotic cells, organellar proteome biogenesis is pivotal for cellular function. Chloroplasts contain a complex proteome, the biogenesis of which includes post-translational import of nuclear-encoded proteins. However, the mechanisms determining when and how nascent chloroplast-targeted proteins are sorted in the cytosol are unknown. Here, we establish the timing and mode of interaction between ankyrin repeat-containing protein 2 (AKR2A), the cytosolic targeting factor of chloroplast outer membrane (COM) proteins, and its interacting partners during translation at the single-molecule level. The targeting signal of a nascent AKR2A client protein residing in the ribosomal exit tunnel induces AKR2A binding to ribosomal RPL23A. Subsequently, RPL23A-bound AKR2A binds to the targeting signal when it becomes exposed from ribosomes. Failure of AKR2A binding to RPL23A in planta severely disrupts protein targeting to the COM; thus, AKR2A-mediated targeting of COM proteins is coupled to their translation, which in turn is crucial for biogenesis of the entire chloroplast proteome.
Collapse
Affiliation(s)
- Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jae-Eun Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Zheng-Yi Xu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
7
|
Analysis of the interaction of a new series of rhodanine derivatives with bovine serum albumin by fluorescence quenching. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0991-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Valle-Delgado JJ, Urbán P, Fernàndez-Busquets X. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. NANOSCALE 2013; 5:3673-3680. [PMID: 23306548 DOI: 10.1039/c2nr32821f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.
Collapse
Affiliation(s)
- Juan José Valle-Delgado
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain
| | | | | |
Collapse
|
9
|
Jung YJ, Albrecht JA, Kwak JW, Park JW. Direct quantitative analysis of HCV RNA by atomic force microscopy without labeling or amplification. Nucleic Acids Res 2012; 40:11728-36. [PMID: 23074195 PMCID: PMC3526272 DOI: 10.1093/nar/gks953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Force-based atomic force microscopy (AFM) was used to detect HCV (hepatitis C virus) RNA directly and to quantitatively analyse it without the need for reverse transcription or amplification. Capture and detection DNA probes were designed. The former was spotted onto a substrate with a conventional microarrayer, and the latter was immobilized on an AFM probe. To control the spacing between the immobilized DNAs on the surface, dendron self-assembly was employed. Force-distance curves showed that the mean force of the specific unbinding events was 32 ± 5 pN, and the hydrodynamic distance of the captured RNA was 30-60 nm. Adhesion force maps were generated with criteria including the mean force value, probability of obtaining the specific curves and hydrodynamic distance. The maps for the samples whose concentrations ranged from 0.76 fM to 6.0 fM showed that cluster number has a linear relationship with RNA concentration, while the difference between the observed number and the calculated one increased at low concentrations. Because the detection limit is expected to be enhanced by a factor of 10 000 when a spot of 1 micron diameter is employed, it is believed that HCV RNA of a few copy numbers can be detected by the use of AFM.
Collapse
Affiliation(s)
- Yu Jin Jung
- Nanogea Corporation, 6162 Bristol Parkway, Culver City, CA 90230, USA.
| | | | | | | |
Collapse
|
10
|
Klein DCG, Øvrebø KM, Latz E, Espevik T, Stokke BT. Direct measurement of the interaction force between immunostimulatory CpG-DNA and TLR9 fusion protein. J Mol Recognit 2012; 25:74-81. [PMID: 22290768 DOI: 10.1002/jmr.2156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The specific interaction between human Toll-like receptor 9 (TLR9)-ectodomain (ECD)-fusion protein and immunostimulatory CpG-DNA was measured using force spectroscopy. Flexible tethers were used between receptors and surface as well as between DNA and atomic force microscope tip to make efficient recognition studies possible. The molecular recognition forces detected are in the range of 50 to 150 ± 20 pN at the used force-loading rates, and the molecular interaction probability was much reduced when the receptors were blocked with free CpG-DNA. A linear increase of the unbinding force with the logarithm of the loading rate was found over the range 0.1 to 30 nN/s. This indicates a single potential barrier characterizing the energy landscape and no intermediate state for the unbinding pathway of CpG-DNA from the TLR9-ECD. Two important kinetic parameters for CpG-DNA interaction with TLR9-ECD were determined from the force-loading rate dependency: an off-rate of k(off) = 0.14 ± 0.10 s(-1) and a binding interaction length of x(β) = 0.30 ± 0.03 nm, which are consistent with literature values. Various models for the molecular interaction of this innate immune receptor binding to CpG-DNA are discussed.
Collapse
Affiliation(s)
- Dionne C G Klein
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
11
|
Cho W, Fowler JD, Furst EM. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6013-6020. [PMID: 22404231 DOI: 10.1021/la300522g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity.
Collapse
Affiliation(s)
- Whirang Cho
- Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, 150 Academy Street, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
12
|
Kim D, Chung NK, Allen S, Tendler SJB, Park JW. Ferritin-based new magnetic force microscopic probe detecting 10 nm sized magnetic nanoparticles. ACS NANO 2012; 6:241-248. [PMID: 22148318 DOI: 10.1021/nn203464g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A single-molecule ferritin picking-up process was realized with the use of AFM, which was enhanced by employing controlled dendron surface chemistry. The approach enabled the placement of a single ferritin protein molecule at the very end of an AFM tip. When used for magnetic force microscopy (MFM) imaging, the tips were able to detect magnetic interactions of approximately 10 nm sized magnetic nanoparticles. The single ferritin tip also showed the characteristics of a "multifunctional" MFM probe that can sense the magnetic force from magnetic materials as well as detect the biomolecular interaction force with DNAs on the surface. The multifunctional tip enabled us not only to investigate the specific molecular interaction but also to image the magnetic interaction between the probe and the substrate, in addition to allowing the common capability of topographic imaging. Because the protein engineering of ferritin and the supporting coordination and conjugation chemistry are well-established, we envisage that it would be straightforward to extend this approach to the development of various single magnetic particle MFM probes of different compositions and sizes.
Collapse
Affiliation(s)
- Duckhoe Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, Korea
| | | | | | | | | |
Collapse
|
13
|
Baos SC, Phillips DB, Wildling L, McMaster TJ, Berry M. Distribution of sialic acids on mucins and gels: a defense mechanism. Biophys J 2012; 102:176-84. [PMID: 22225812 DOI: 10.1016/j.bpj.2011.08.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 07/24/2011] [Accepted: 08/02/2011] [Indexed: 10/14/2022] Open
Abstract
Moist mucosal epithelial interfaces that are exposed to external environments are dominated by sugar epitopes, some of which (e.g., sialic acids) are involved in host defense. In this study, we determined the abundance and distribution of two sialic acids to assess differences in their availability to an exogenous probe in isolated mucins and mucous gels. We used atomic force microscopy to obtain force maps of human preocular mucous and purified ocular mucins by probing and locating the interactions between tip-tethered lectins Maackia amurensis and Sambucus nigra and their respective receptors, α-2,3 and α-2,6 N-acetylneuraminic (sialic) acids. The rupture force distributions were not affected by neighboring sugar-bearing molecules. Energy contours for both lectin-sugar bonds were fitted to a two-barrier model, suggesting a conformational change before dissociation. In contrast to data from purified mucin molecules, the preocular gels presented numerous large clusters (19,000 ± 4000 nm(2)) of α-2,6 sialic acids, but very few small clusters (2000 ± 500 nm(2)) of α-2,3 epitopes. This indicates that mucins, which are rich in α-2,3 sialic acids, are only partially exposed at the surface of the mucous gel. Microorganisms that recognize α-2,3 sialic acids will encounter only isolated ligands, and the adhesion of other microorganisms will be enhanced by large islands of neighboring α-2,6 sialic acids. We have unveiled an additional level of mucosal surface heterogeneity, specifically in the distribution of pro- and antiadhesive sialic acids that protect underlying epithelia from viruses and bacteria.
Collapse
Affiliation(s)
- S C Baos
- Academic Unit of Ophthalmology, Bristol Eye Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Kim IH, Lee MN, Ryu SH, Park JW. Nanoscale Mapping and Affinity Constant Measurement of Signal-Transducing Proteins by Atomic Force Microscopy. Anal Chem 2011; 83:1500-3. [DOI: 10.1021/ac102695e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Il Hong Kim
- Department of Chemistry, ‡Department of Life Science, §Division of Integrative Biosciences and Biotechnology, National Core Research Center for Systems Bio-Dynamics, ⊥Postech Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| | - Mi Nam Lee
- Department of Chemistry, ‡Department of Life Science, §Division of Integrative Biosciences and Biotechnology, National Core Research Center for Systems Bio-Dynamics, ⊥Postech Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| | - Sung Ho Ryu
- Department of Chemistry, ‡Department of Life Science, §Division of Integrative Biosciences and Biotechnology, National Core Research Center for Systems Bio-Dynamics, ⊥Postech Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Department of Life Science, §Division of Integrative Biosciences and Biotechnology, National Core Research Center for Systems Bio-Dynamics, ⊥Postech Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| |
Collapse
|
15
|
Roy D, Kwon SH, Kwak JW, Park JW. “Seeing and Counting” Individual Antigens Captured on a Microarrayed Spot with Force-Based Atomic Force Microscopy. Anal Chem 2010; 82:5189-94. [DOI: 10.1021/ac100476b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dhruvajyoti Roy
- Department of Chemistry, National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Sung Hong Kwon
- Department of Chemistry, National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Ju-Won Kwak
- Department of Chemistry, National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Joon Won Park
- Department of Chemistry, National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|