1
|
Downard KM, Cody RB. Amino Acid Composition Determination From the Fractional Mass of Peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5089. [PMID: 39302082 DOI: 10.1002/jms.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
A peptide's fractional mass is directly associated with its elemental composition and thus amino acid composition. Here it is demonstrated that a peptide's fractional mass alone can be a useful identifier or indicator of that composition for small to mid-sized peptides (5-7 amino acids) and can significantly reduce the number of viable amino acid compositions for larger peptides (> 8 residues) to include or exclude certain possibilities. Separate consideration of the integer portion of the peptide's mass helps to reduce the number of possibilities where many duplicate fractional mass values are found. Adoption of this fractional mass strategy should aid approaches that are presently employed for peptide identification, including in the use of mass map data to search protein databases for proteomics applications.
Collapse
Affiliation(s)
- Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, New South Wales, Australia
| | | |
Collapse
|
2
|
Lanyon HE, Todd BP, Downard KM. Distinguishing common SARS-CoV2 omicron and recombinant variants with high resolution mass spectrometry. Analyst 2023; 148:6306-6314. [PMID: 37936487 DOI: 10.1039/d3an01376f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A selected ion monitoring (SIM) approach combined with high resolution mass spectrometry is employed to identify and distinguish common SARS-CoV2 omicron and recombinant variants in clinical specimens. Mutations within the receptor binding domain (RBD) within the surface spike protein of the virus result in a combination of peptide segments of unique sequence and mass that were monitored to detect BA.2.75 (including CH.1.1) and XBB (including 1.5) variants prevalent in the state's population in early 2023. SIM detection of pairs of peptides unique to each variant were confidently detected and differentiated in 57.3% of the specimens, with a further 10 or 17.5% (for a total of 74.8%) detected based on a single peptide biomarker. The BA.2.75 sub-variant was detected in 18.7%, while recombinant variants XBB and XBB.1.5 were detected in 13.3% and 25.3% of the specimens respectively, consistent with circulating levels in the population characterised by RT-PCR. Virus was detected in 75 SARS-CoV2 positive specimens by mass spectrometry down to the low or mid 104 copy level, with a single false positive and no false negative identified. This article is the first paper to characterise recombinant strains of the SARS-CoV2 virus by this, or any other, MS method.
Collapse
Affiliation(s)
- Henry E Lanyon
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Benjamin P Todd
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| |
Collapse
|
3
|
Downard KM. 25 Years Responding to Respiratory and Other Viruses with Mass Spectrometry. Mass Spectrom (Tokyo) 2023; 12:A0136. [PMID: 38053835 PMCID: PMC10694638 DOI: 10.5702/massspectrometry.a0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
This review article presents the development and application of mass spectrometry (MS) approaches, developed in the author's laboratory over the past 25 years, to detect; characterise, type and subtype; and distinguish major variants and subvariants of respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All features make use of matrix-assisted laser desorption ionisation (MALDI) mass maps, recorded for individual viral proteins or whole virus digests. A MALDI-based immunoassay in which antibody-peptide complexes were preserved on conventional MALDI targets without their immobilisation led to an approach that enabled their indirect detection. The site of binding, and thus the molecular antigenicity of viruses, could be determined. The same approach was employed to study antivirals bound to their target viral protein, the nature of the binding residues, and relative binding affinities. The benefits of high-resolution MS were exploited to detect sequence-conserved signature peptides of unique mass within whole virus and single protein digests. These enabled viruses to be typed, subtyped, their lineage determined, and variants and subvariants to be distinguished. Their detection using selected ion monitoring improved analytical sensitivity limits to aid the identification of viruses in clinical specimens. The same high-resolution mass map data, for a wide range of viral strains, were input into a purpose-built algorithm (MassTree) in order to both chart and interrogate viral evolution. Without the need for gene or protein sequences, or any sequence alignment, this phylonumerics approach also determines and displays single-point mutations associated with viral protein evolution in a single-tree building step.
Collapse
Affiliation(s)
- Kevin M. Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| |
Collapse
|
4
|
Mashhadi IS, Safarnejad MR, Shahmirzaie M, Aliahmadi A, Ghassempour A, Aboul-Enein HY. Determination of the epitopic peptides of fig mosaic virus and the single-chain variable fragment antibody by mass spectrometry. Anal Biochem 2023; 681:115319. [PMID: 37716512 DOI: 10.1016/j.ab.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The study of antibody-antigen interactions, through epitope mapping, enhances our understanding of antibody neutralization and antigenic determinant recognition. Epitope mapping, employing monoclonal antibodies and mass spectrometry, has emerged as a rapid and precise method to investigate viral antigenic determinants. In this report, we propose an approach to improve the accuracy of epitopic peptide interaction rate recognition. To achieve this, we investigated the interaction between the nucleocapsid protein of fig mosaic virus (FMV-NP) and single-chain variable fragment antibodies (scFv-Ab). These scFv-Ab maintain high specificity similar to whole monoclonal antibodies, but they are smaller in size. We coupled this with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The experimental design involved using two different enzymes to digest FMV-NP separately. The resulting peptides were then incubated separately with the desired scFv-Ab at different incubation times and antibody concentrations. This allowed us to monitor the relative rate of epitopic peptide interaction with the antibody. The results demonstrated that, at a 1:1 ratio and after 2 h of interaction, the residues 122-136, 148-157, and 265-276 exhibited high-rate epitopic peptide binding, with reductions in peak intensity of 78%, 21%, and 22%, respectively. Conversely, the residues 250-264 showed low-rate binding, with a 15% reduction in peak intensity. This epitope mapping approach, utilizing scFv-Ab, two different enzymes, and various incubation times, offers a precise and dependable analysis for monitoring and recognizing the binding kinetics of antigenic determinants. Furthermore, this method can be applied to study any kind of antigens.
Collapse
Affiliation(s)
- Ilnaz Soleimani Mashhadi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Mohammad Reza Safarnejad
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Morteza Shahmirzaie
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Hoyle JS, Downard KM. High resolution mass spectrometry of respiratory viruses: beyond MALDI-ToF instruments for next generation viral typing, subtyping, variant and sub-variant identification. Analyst 2023; 148:4263-4273. [PMID: 37587867 DOI: 10.1039/d3an00953j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In the wake of the SARS-CoV2 pandemic, a point has been reached to assess the limitations and strengths of the analytical responses to virus identification and characterisation. Mass spectrometry has played a growing role in this area for over two decades, and this review highlights the benefits of mass spectrometry (MS) over PCR-based methods together with advantages of high mass resolution, high mass accuracy strategies over conventional MALDI-ToF and ESI-MS/MS instrumentation. This review presents the development and application of high resolution mass spectrometry approaches to detect, characterise, type and subtype, and distinguish variants of the influenza and SARS-CoV-2 respiratory viruses. The detection limits for the identification of SARS-CoV2 virus variants in clinical specimens and the future uptake of high resolution instruments in clinical laboratories are discussed. The same high resolution mass data can be used to monitor viral evolution and follow evolutionary trajectories.
Collapse
Affiliation(s)
- Joshua S Hoyle
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| |
Collapse
|
6
|
Lanyon HE, Hoyle JS, Downard KM. Resolving omicron sub-variants of SARS CoV-2 coronavirus with MALDI mass spectrometry. Analyst 2023; 148:966-972. [PMID: 36757162 DOI: 10.1039/d2an01843h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mass mapping using high resolution mass spectrometry has been applied to identify and rapidly distinguish the omicron sub-variants across the BA.1-BA.5 lineages. Lineage-specific protein mutations in the surface spike protein give rise to peptide biomarkers of unique mass that can be confidently and sensitively detected with high resolution mass spectrometry. Those that are most efficiently ionised and detected within the S1 subunit in recombinant forms facilitate their detection in clinical specimens containing other SARS-CoV2 viral proteins and contaminants. A study of five dozen omicron-positive specimens, using a selected ion monitoring approach, detected peptide biomarkers for strains of BA.1, BA.2.75 and BA.4 sub-variants in 23%, 42% and 28% of samples respectively, consistent with their reported levels in the local population. The virus was confidently assigned in over 93% of omicron positive specimens. The ease of detection of the BA.2.75 variant, in particular, is of vital importance given its rapid global spread in late 2022 due to several immune evasive mutations within the receptor-binding domain.
Collapse
Affiliation(s)
- Henry E Lanyon
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Joshua S Hoyle
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| |
Collapse
|
7
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
8
|
Mann C, Griffin JH, Downard KM. Detection and evolution of SARS-CoV-2 coronavirus variants of concern with mass spectrometry. Anal Bioanal Chem 2021; 413:7241-7249. [PMID: 34532764 PMCID: PMC8445501 DOI: 10.1007/s00216-021-03649-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
Mass mapping using high-resolution mass spectrometry has been applied to identify and rapidly distinguish SARS-CoV-2 coronavirus strains across five major variants of concern. Deletions or mutations within the surface spike protein across these variants, which originated in the UK, South Africa, Brazil and India (known as the alpha, beta, gamma and delta variants respectively), lead to associated mass differences in the mass maps. Peptides of unique mass have thus been determined that can be used to identify and distinguish the variants. The same mass map profiles are also utilized to construct phylogenetic trees, without the need for protein (or gene) sequences or their alignment, in order to chart and study viral evolution. The combined strategy offers advantages over conventional PCR-based gene-based approaches exploiting the ease with which protein mass maps can be generated and the speed and sensitivity of mass spectrometric analysis.
Collapse
Affiliation(s)
- Christian Mann
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| | - Justin H Griffin
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Mann C, Downard KM. Evolution of SARS CoV-2 Coronavirus Surface Protein Investigated with Mass Spectrometry Based Phylogenetics. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1928685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Mann
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| | - Kevin M. Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| |
Collapse
|
10
|
Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evol Biol 2021. [DOI: 10.1007/s11692-021-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
|
12
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
13
|
|
14
|
Chang D, Zaia J. Why Glycosylation Matters in Building a Better Flu Vaccine. Mol Cell Proteomics 2019; 18:2348-2358. [PMID: 31604803 PMCID: PMC6885707 DOI: 10.1074/mcp.r119.001491] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Low vaccine efficacy against seasonal influenza A virus (IAV) stems from the ability of the virus to evade existing immunity while maintaining fitness. Although most potent neutralizing antibodies bind antigenic sites on the globular head domain of the IAV envelope glycoprotein hemagglutinin (HA), the error-prone IAV polymerase enables rapid evolution of key antigenic sites, resulting in immune escape. Significantly, the appearance of new N-glycosylation consensus sequences (sequons, NXT/NXS, rarely NXC) on the HA globular domain occurs among the more prevalent mutations as an IAV strain undergoes antigenic drift. The appearance of new glycosylation shields underlying amino acid residues from antibody contact, tunes receptor specificity, and balances receptor avidity with virion escape, all of which help maintain viral propagation through seasonal mutations. The World Health Organization selects seasonal vaccine strains based on information from surveillance, laboratory, and clinical observations. Although the genetic sequences are known, mature glycosylated structures of circulating strains are not defined. In this review, we summarize mass spectrometric methods for quantifying site-specific glycosylation in IAV strains and compare the evolution of IAV glycosylation to that of human immunodeficiency virus. We argue that the determination of site-specific glycosylation of IAV glycoproteins would enable development of vaccines that take advantage of glycosylation-dependent mechanisms whereby virus glycoproteins are processed by antigen presenting cells.
Collapse
Affiliation(s)
- Deborah Chang
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
15
|
Akand EH, Downard KM. Mechanisms of antiviral resistance in influenza neuraminidase revealed by a mass spectrometry based phylonumerics approach. Mol Phylogenet Evol 2019; 135:286-296. [DOI: 10.1016/j.ympev.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/11/2019] [Accepted: 03/17/2019] [Indexed: 12/01/2022]
|
16
|
Abstract
New surveillance methods employing mass spectrometry (MS) have been developed to characterize the influenza virus and, by extension, other biopathogens at the molecular level. The structure and antigenicity of protein antigens on the surface of the viral capsid are screened in a single step employing the immunoproteomics MS-based approach. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) coupled to gel electrophoresis is used both to identify viral antigens and screen their antigenicity. Evidence that antigen-antibody complexes, and protein complexes more generally, can survive on conventional MALDI targets has allowed both the primary structure and antigenicity of viral strains to be rapidly screened and protein epitopes to be identified with molecular precision. The approach should aid in future screening of the virus and assist in the development of immunogenic peptide constructs as alternative treatments to vaccination over the whole inactivated virus. The assay adds to the repertoire of mass spectrometric approaches for examining antigen-antibody interactions, in particular, and protein complexes, in general, without the need to immobilize, tag, or recover either component.
Collapse
Affiliation(s)
- Kevin M Downard
- Infectious Disease Responses Laboratory, POWCS, Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Parreira R. Laboratory Methods in Molecular Epidemiology: Viral Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0003-2018. [PMID: 30387412 PMCID: PMC11633636 DOI: 10.1128/microbiolspec.ame-0003-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Microbiologia Médica/Global Health and Tropical Medicine (GHTM) Research Centre, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
| |
Collapse
|
18
|
Ancestral and Compensatory Mutations that Promote Antiviral Resistance in Influenza N1 Neuraminidase Revealed by a Phylonumerics Approach. J Mol Evol 2018; 86:546-553. [DOI: 10.1007/s00239-018-9866-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
|
19
|
Akand EH, Downard KM. Identification of epistatic mutations and insights into the evolution of the influenza virus using a mass-based protein phylogenetic approach. Mol Phylogenet Evol 2018; 121:132-138. [PMID: 29337273 DOI: 10.1016/j.ympev.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022]
Abstract
A mass-based protein phylogenetic approach developed in this laboratory has been applied to study mutation trends and identify consecutive or near-consecutive mutations typically associated with positive epistasis. While epistasis is thought to occur commonly during the evolution of viruses, the extent of epistasis in influenza, and its role in the evolution of immune escape and drug resistant mutants, remains to be systematically investigated. Here putative epistatic mutations within H3 hemagglutinin in type A influenza are identified where leading parent mutations were found to predominate within reported antigenic sites of the protein. Frequent subsequent mutations resided exclusively in different antigenic regions, providing the virus with a possible immune escape mechanism, or at other remote sites that drive beneficial protein structural and functional change. The results also enable a "small steps" evolutionary model to be proposed where the more frequent consecutive, or near-consecutive, non-conservative mutations exhibited less structural, and thus functional, change. This favours the evolutionary survival of the virus over mutations associated with more substantive change that may cause or risk its own extinction.
Collapse
Affiliation(s)
- Elma H Akand
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia.
| |
Collapse
|
20
|
Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, Wang P, Liu R, Jiang J, Cong H, Liang J, Chen W, Cao H, Liu W, Gao GF, Du Y, Jiang X, Li X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron 2017; 91:46-52. [PMID: 27987410 DOI: 10.1016/j.bios.2016.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Accurate diagnosis of influenza viruses is difficult and generally requires a complex process because of viral diversity and rapid mutability. In this study, we report a simple and rapid strategy for the detection and differentiation of influenza viruses using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the aggregation of gGNP probes on the viral surface, which is mediated by the specific binding of the virus to the glycans. Using a set of gGNPs bearing different glycan structures, fourteen influenza virus strains, including the major subtypes currently circulating in human and avian populations, were readily differentiated from each other and from a human respiratory syncytial virus in a single-step colorimetric procedure. The results presented here demonstrate the potential of this gGNP-based system in the development of convenient and portable sensors for the clinical diagnosis and surveillance of influenza viruses.
Collapse
Affiliation(s)
- Longtang Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou 730050, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Pengfei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Ruichen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haolong Cong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingnan Liang
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Wenwen Chen
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China.
| |
Collapse
|
21
|
Uddin R, Downard KM. Subtyping of hepatitis C virus with high resolution mass spectrometry. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2017; 4-5:19-24. [PMID: 39193130 PMCID: PMC11322781 DOI: 10.1016/j.clinms.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
A proteotyping approach using high resolution mass spectrometry has been applied, for the first time, to subtype the hepatitis C virus based upon detection of one or more signature peptides derived from the E1 and E2 envelope glycoproteins. These signature peptides represent conserved peptide segments within these proteins for particular subtypes of the virus that are found to be unique in mass when compared with the theoretical masses for all peptide segments of translated HCV proteins within a specifically constructed database. The successful application of the approach to three different subtypes of the virus (i.e., 1a, 1b and 2b) is demonstrated for protein and whole virus proteolytic digests. The approach has the potential to replace existing PCR-based subtyping by offering a more direct and cost comparable strategy that is not challenged by mixed infection scenarios.
Collapse
Affiliation(s)
- Reaz Uddin
- University of New South Wales, Sydney, Australia
| | | |
Collapse
|
22
|
Abstract
Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.
Collapse
Affiliation(s)
- Shiyong Ma
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia
| | - Kevin M Downard
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia.
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia.
| |
Collapse
|
23
|
Lu R, Müller P, Downard KM. Molecular basis of influenza hemagglutinin inhibition with an entry-blocker peptide by computational docking and mass spectrometry. Antivir Chem Chemother 2016; 24:109-17. [PMID: 26759268 DOI: 10.1177/2040206615622920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The increased resistance of circulating strains to current antiviral inhibitors of the influenza virus necessitates that new antivirals and their mode of action are identified. Influenza hemagglutinin is an ideal target given inhibitors of its function can block the entry of the virus into host cells during the early stages of replication. This article describes the molecular basis for the inhibition of H1 and H5 hemagglutinin by an entry-blocker peptide using companion molecular docking and mass spectrometry-based experiments. METHODS A combination of hemagglutination inhibition assays, computational molecular docking and a novel mass spectrometry-based approach are employed to explore the mode of action of the entry-blocker peptide at a molecular level. RESULTS The entry-blocker peptide is shown to be able to maximally inhibit blood cell hemagglutination at a concentration of between 6.4 and 9.2 µM. The molecular basis for this inhibition is derived from the binding of the peptide to hemagglutinin in the vicinity of the reported sialic acid binding site surrounded by an α-helix (190-helix) and two loop (130-loop and 220-loop) regions in the case of a H1 hemagglutinin and the second loop region in the case of a H5 hemagglutinin. CONCLUSIONS The results support the recognized potential of the entry-blocker peptide as an effective antiviral agent that can inhibit the early stages of viral replication and further illustrate the power of a combination of docking and a mass spectrometry approach to screen the molecular basis of new antiviral inhibitors to the influenza virus.
Collapse
Affiliation(s)
- Robert Lu
- University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
24
|
Murugan V, Parasuraman P, Selvin JFA, Priyadarzini TRK, Gromiha MM, Fukui K, Veluraja K. Geometry Optimization of Carbohydrate Binding Sites of Influenza: A Quantum Mechanical Approach. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1093135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Ma S, Downard KM, Wong JW. FluClass: A novel algorithm and approach to score and visualize the phylogeny of the influenza virus using mass spectrometry. Anal Chim Acta 2015; 895:54-61. [DOI: 10.1016/j.aca.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
26
|
Foster MW, Gerhardt G, Robitaille L, Plante PL, Boivin G, Corbeil J, Moseley MA. Targeted Proteomics of Human Metapneumovirus in Clinical Samples and Viral Cultures. Anal Chem 2015; 87:10247-54. [PMID: 26376123 DOI: 10.1021/acs.analchem.5b01544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rapid, sensitive, and specific identification of infectious pathogens from clinical isolates is a critical need in the hospital setting. Mass spectrometry (MS) has been widely adopted for identification of bacterial pathogens, although polymerase chain reaction remains the mainstay for the identification of viral pathogens. Here, we explored the capability of MS for the detection of human metapneumovirus (HMPV), a common cause of respiratory tract infections in children. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) sequencing of a single HMPV reference strain (CAN97-83) was used to develop a multiple reaction monitoring (MRM) assay that employed stable isotope-labeled peptide internal standards for quantitation of HMPV. Using this assay, we confirmed the presence of HMPV in viral cultures from 10 infected patients and further assigned genetic lineage based on the presence/absence of variant peptides belonging to the viral matrix and nucleoproteins. Similar results were achieved for primary clinical samples (nasopharyngeal aspirates) from the same individuals. As validation, virus lineages, and variant coding sequences, were confirmed by next-generation sequencing of viral RNA obtained from the culture samples. Finally, separate dilution series of HMPV A and B lineages were used to further refine and assess the robustness of the assay and to determine limits of detection in nasopharyngeal aspirates. Our results demonstrate the applicability of MRM for identification of HMPV, and assignment of genetic lineage, from both viral cultures and clinical samples. More generally, this approach should prove tractable as an alternative to nucleic-acid based sequencing for the multiplexed identification of respiratory virus infections.
Collapse
Affiliation(s)
| | - Geoff Gerhardt
- Waters Corporation , Milford, Massachusetts 01757, United States
| | - Lynda Robitaille
- Department of Molecular Medicine, Department of Microbiology, Immunology and Infectious Diseases, Université Laval , Québec City, Québec, Canada G1V 0A6
| | - Pier-Luc Plante
- Department of Molecular Medicine, Department of Microbiology, Immunology and Infectious Diseases, Université Laval , Québec City, Québec, Canada G1V 0A6
| | - Guy Boivin
- Department of Molecular Medicine, Department of Microbiology, Immunology and Infectious Diseases, Université Laval , Québec City, Québec, Canada G1V 0A6
| | - Jacques Corbeil
- Department of Molecular Medicine, Department of Microbiology, Immunology and Infectious Diseases, Université Laval , Québec City, Québec, Canada G1V 0A6
| | | |
Collapse
|
27
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 825] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
28
|
Majchrzykiewicz-Koehorst JA, Heikens E, Trip H, Hulst AG, de Jong AL, Viveen MC, Sedee NJA, van der Plas J, Coenjaerts FEJ, Paauw A. Rapid and generic identification of influenza A and other respiratory viruses with mass spectrometry. J Virol Methods 2015; 213:75-83. [PMID: 25500183 PMCID: PMC7113647 DOI: 10.1016/j.jviromet.2014.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022]
Abstract
The rapid identification of existing and emerging respiratory viruses is crucial in combating outbreaks and epidemics. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reliable identification method in bacterial diagnostics, but has not been used in virological diagnostics. Mass spectrometry systems have been investigated for the identification of respiratory viruses. However, sample preparation methods were laborious and time-consuming. In this study, a reliable and rapid sample preparation method was developed allowing identification of cultured respiratory viruses. Tenfold serial dilutions of ten cultures influenza A strains, mixed samples of influenza A virus with human metapneumovirus or respiratory syncytial virus, and reconstituted clinical samples were treated with the developed sample preparation method. Subsequently, peptides were subjected to MALDI-TOF MS and liquid chromatography tandem mass spectrometry (LC-MS/MS). The influenza A strains were identified to the subtype level within 3h with MALDI-TOF MS and 6h with LC-MS/MS, excluding the culturing time. The sensitivity of LC-MS/MS was higher compared to MALDI-TOF MS. In addition, LC-MS/MS was able to discriminate between two viruses in mixed samples and was able to identify virus from reconstituted clinical samples. The development of an improved and rapid sample preparation method allowed generic and rapid identification of cultured respiratory viruses by mass spectrometry.
Collapse
Affiliation(s)
- Joanna A Majchrzykiewicz-Koehorst
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Esther Heikens
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Hein Trip
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Albert G Hulst
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Ad L de Jong
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Norbert J A Sedee
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Jan van der Plas
- Expert Centre Force Health Protection, Health Care Division, Support Command, Ministry of Defence, Korte Molenweg 3, Building 37, 3941 PW Doorn, The Netherlands
| | - Frank E J Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Armand Paauw
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
29
|
Role of Analytics in Viral Safety. VACCINE ANALYSIS: STRATEGIES, PRINCIPLES, AND CONTROL 2015. [PMCID: PMC7122056 DOI: 10.1007/978-3-662-45024-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In summary, this chapter reviews the principles of how the current and routine tests detect adventitious agents, and reviews how novel and emerging methods differ in their detection principles. These facets may permit novel methods to emerge to supplement, refine, or replace the routine methods. We have suggested a framework for risk assessment to assure biosafety in vaccines and suggested quantitative modeling to help crystallize thinking about the place of testing, either routine or novel, in this assurance. We assert that testing for adventitious agents should not be the sole basis on which product biosafety is assured. Appropriate sourcing and quality control of raw and starting materials, adherence to principles of Good Manufacturing Practices, including environmental and personnel monitoring and process validation, and finally, testing as verification are the package needed for maximal assurance of biosafety. Thus, a pathway forward to a new paradigm for adventitious agent testing exists in which detection of a broader array of potential adventitious agents might be included in the testing, with adequate sensitivity to provide the needed assurance of verification that there has been no catastrophic breach, in the context of the overall process, design, and adherence to cGMP. Furthermore, it is our hope that we may be able to implement the 3 Rs policy to reduce, replace, and/or refine the use of animals in product safety testing, at the same time that we provide greater assurance of the biosafety of vaccines.
Collapse
|
30
|
Akashi S, Maleknia SD, Saikusa K, Downard KM. Stability of the βB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J Struct Biol 2014; 189:20-7. [PMID: 25478970 DOI: 10.1016/j.jsb.2014.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Ion mobility mass spectrometry was employed to study the structure of the βB2B3-crystallin heterodimer following oxidation through its increased exposure to hydroxyl radicals. The results demonstrate that the heterodimer can withstand limited oxidation through the incorporation of up to some 10 oxygen atoms per subunit protein without any appreciable change to its average collision cross section and thus conformation. These results are in accord with the oxidation levels and timescales applicable to radical probe mass spectrometry (RP-MS) based protein footprinting experiments. Following prolonged exposure, the heterodimer is increasingly degraded through cleavage of the backbone of the subunit crystallins rather than denaturation such that heterodimeric structures with altered conformations and ion mobilities were not detected. However, evidence from measurements of oxidation levels within peptide segments, suggest the presence of some aggregated structure involving C-terminal domain segments of βB3 crystallin across residues 115-126 and 152-166. The results demonstrate, for the first time, the ability of ion mobility in conjunction with RP-MS to investigate the stability of protein complexes to, and the onset of, free radical based oxidative damage that has important implications in cataractogenesis.
Collapse
Affiliation(s)
- Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Simin D Maleknia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kazumi Saikusa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kevin M Downard
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Downard KM. Proteotyping for the rapid identification of influenza virus and other biopathogens. Chem Soc Rev 2014; 42:8584-95. [PMID: 23632861 DOI: 10.1039/c3cs60081e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular Bioscience G-08, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Fernandes ND, Downard KM. Origins of the reassortant 2009 pandemic influenza virus through proteotyping with mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:93-102. [PMID: 24446268 DOI: 10.1002/jms.3310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
The application of a proteotyping approach employing high resolution mass spectrometry based is shown to be able to determine the gene origin of all major viral proteins in a triple reassortant pandemic 2009 influenza strain. Key to this approach is the identification of unique swine-host-specific signature and indicator peptides that are characteristic of influenza viruses circulating in North American and Eurasian swine herds in the years prior to the 2009 influenza pandemic. These swine-and human pandemic-specific signatures enable the origins of viral proteins in a clinical virus specimen to be determined and such strains to be rapidly and directly differentiated from other co-circulating seasonal influenza viruses from the same period. The proteotyping strategy offers advantages over traditional RT-PCR-based approaches that are currently the mainstay of influenza surveillance at the molecular level.
Collapse
Affiliation(s)
- Neil D Fernandes
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | |
Collapse
|
33
|
Swaminathan K, Downard KM. Evolution of Influenza Neuraminidase and the Detection of Antiviral Resistant Strains Using Mass Trees. Anal Chem 2013; 86:629-37. [DOI: 10.1021/ac402892m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kavya Swaminathan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales NSW 2006, Australia
| | - Kevin M. Downard
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales NSW 2006, Australia
| |
Collapse
|
34
|
Incorporation of a proteotyping approach using mass spectrometry for surveillance of influenza virus in cell-cultured strains. J Clin Microbiol 2013; 52:725-35. [PMID: 24226917 DOI: 10.1128/jcm.02315-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reemergence of deadly pandemic influenza virus strains has necessitated the development of improved methods for rapid detection and subtyping of influenza viruses that will enable more strains to be characterized at the molecular level. Representative circulating strains of human influenza viruses from primary clinical specimens were grown in cell culture, purified through polyethylene glycol precipitation, proteolytically digested with an endoproteinase, and analyzed and identified by high-resolution mass spectrometry using unique signature peptides that are characteristic of type A H1N1 and H3N2 and type B influenza viruses. This proteotyping approach enabled circulating strains of type A influenza virus to be typed and subtyped, cocirculating seasonal and pandemic H1N1 viruses to be differentiated, and the lineage of type B viruses to be determined through single-ion detection by high-resolution mass spectrometry. Results were obtained using virus titers comparable to those used in reverse transcription (RT)-PCR assays with clinical specimens grown in cell cultures. The methodology represents a more rapid and direct approach than RT-PCR and can be integrated into existing procedures currently used for the surveillance of emerging pandemic and seasonal influenza viruses.
Collapse
|
35
|
Kordyukova LV, Serebryakova MV. Mass spectrometric approaches to study enveloped viruses: new possibilities for structural biology and prophylactic medicine. BIOCHEMISTRY (MOSCOW) 2013; 77:830-42. [PMID: 22860905 PMCID: PMC7087845 DOI: 10.1134/s0006297912080044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review considers principles of the use of mass spectrometry for the study of biological macromolecules. Some examples of protein identification, virion proteomics, testing vaccine preparations, and strain surveillance are represented. Possibilities of structural characterization of viral proteins and their posttranslational modifications are shown. The authors’ studies by MALDI-MS on S-acylation of glycoproteins from various families of enveloped viruses and on oligomerization of the influenza virus hemagglutinin transmembrane domains are summarized.
Collapse
Affiliation(s)
- L V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | |
Collapse
|
36
|
Lun ATL, Swaminathan K, Wong JWH, Downard KM. Mass trees: a new phylogenetic approach and algorithm to chart evolutionary history with mass spectrometry. Anal Chem 2013; 85:5475-82. [PMID: 23647083 DOI: 10.1021/ac4005875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new phylogenetics approach and algorithm with which to chart the evolutionary history of organisms is presented. It utilizes mass spectral data produced from the proteolytic digestion of proteins, rather than partial or complete gene or translated gene sequences. The concept and validity of the approach is demonstrated herein using both theoretical and experimental mass data, together with the translated gene sequences of the hemagglutinin protein of the influenza virus. A comparison of the mass trees with conventional sequenced-based phylogenetic trees, using two separate tree comparison algorithms, reveals a high degree of similarity and congruence among the trees. Given that the mass map data can be generated more rapidly than gene sequences, even when next generation parallel sequencing is employed, mass trees offer new opportunities and advantages for phylogenetic analysis.
Collapse
Affiliation(s)
- Aaron T L Lun
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
37
|
Nguyen AP, Downard KM. Subtyping of influenza neuraminidase using mass spectrometry. Analyst 2013; 138:1787-93. [PMID: 23370118 DOI: 10.1039/c3an00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proteotyping approach which employs high resolution mass spectrometry is shown to be able to differentiate all nine neuraminidase subtypes of type A influenza viruses that infect both humans and animals. Conserved sequences among tryptic peptides were identified through alignments of influenza neuraminidase sequences across all subtypes N1-N9 among human and animal hosts. Those that were unique in mass represent signature peptides which, when detected in the mass spectra of an influenza neuraminidase or whole virus digest, enable strains to be subtyped with confidence. The ability to distinguish N1 neuraminidase derived from human H5N1 and H1N1 strains is also demonstrated. The approach provides a more rapid and direct approach with which to subtype the virus than conventional molecular based PCR methods with comparable sensitivity. This should help facilitate a more rapid response in the event of a local epidemic or global pandemic.
Collapse
Affiliation(s)
- An P Nguyen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
38
|
Nguyen AP, Downard KM. Proteotyping of the Parainfluenza Virus with High-Resolution Mass Spectrometry. Anal Chem 2013; 85:1097-105. [DOI: 10.1021/ac302962u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- An P. Nguyen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006,
Australia
| | - Kevin M. Downard
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006,
Australia
| |
Collapse
|
39
|
Lun AT, Wong JW, Downard KM. FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics 2012; 13:208. [PMID: 22906155 PMCID: PMC3505172 DOI: 10.1186/1471-2105-13-208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is one of the oldest and deadliest infectious diseases known to man. Reassorted strains of the virus pose the greatest risk to both human and animal health and have been associated with all pandemics of the past century, with the possible exception of the 1918 pandemic, resulting in tens of millions of deaths. We have developed and tested new computer algorithms, FluShuffle and FluResort, which enable reassorted viruses to be identified by the most rapid and direct means possible. These algorithms enable reassorted influenza, and other, viruses to be rapidly identified to allow prevention strategies and treatments to be more efficiently implemented. RESULTS The FluShuffle and FluResort algorithms were tested with both experimental and simulated mass spectra of whole virus digests. FluShuffle considers different combinations of viral protein identities that match the mass spectral data using a Gibbs sampling algorithm employing a mixed protein Markov chain Monte Carlo (MCMC) method. FluResort utilizes those identities to calculate the weighted distance of each across two or more different phylogenetic trees constructed through viral protein sequence alignments. Each weighted mean distance value is normalized by conversion to a Z-score to establish a reassorted strain. CONCLUSIONS The new FluShuffle and FluResort algorithms can correctly identify the origins of influenza viral proteins and the number of reassortment events required to produce the strains from the high resolution mass spectral data of whole virus proteolytic digestions. This has been demonstrated in the case of constructed vaccine strains as well as common human seasonal strains of the virus. The algorithms significantly improve the capability of the proteotyping approach to identify reassorted viruses that pose the greatest pandemic risk.
Collapse
Affiliation(s)
- Aaron Tl Lun
- School of Molecular Bioscience G-08, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
40
|
Priyadarzini TRK, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Theoretical investigation on the binding specificity of sialyldisaccharides with hemagglutinins of influenza A virus by molecular dynamics simulations. J Biol Chem 2012; 287:34547-57. [PMID: 22846994 DOI: 10.1074/jbc.m112.357061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognition of cell-surface sialyldisaccharides by influenza A hemagglutinin (HA) triggers the infection process of influenza. The changes in glycosidic torsional linkage and the receptor conformations may alter the binding specificity of HAs to the sialylglycans. In this study, 10-ns molecular dynamics simulations were carried out to examine the structural and dynamic behavior of the HAs bound with sialyldisaccharides Neu5Acα(2-3)Gal (N23G) and Neu5Acα(2-6)Gal (N26G). The analysis of the glycosidic torsional angles and the pair interaction energy between the receptor and the interacting residues of the binding site reveal that N23G has two binding modes for H1 and H5 and a single binding mode for H3 and H9. For N26G, H1 and H3 has two binding modes, and H5 and H9 has a single binding mode. The direct and water-mediated hydrogen bonding interactions between the receptors and HAs play dominant roles in the structural stabilization of the complexes. It is concluded from pair interaction energy and Molecular Mechanic-Poisson-Boltzmann Surface Area calculations that N26G is a better receptor for H1 when compared with N23G. N23G is a better receptor for H5 when compared with N26G. However, H3 and H9 can recognize N23G and N26G in equal binding specificity due to the marginal energy difference (≈2.5 kcal/mol). The order of binding specificity of N23G is H3 > H5 > H9 > H1 and N26G is H1 > H3 > H5 > H9, respectively. The proposed conformational models will be helpful in designing inhibitors for influenza virus.
Collapse
Affiliation(s)
- Thanu R K Priyadarzini
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627 012, India
| | | | | | | | | |
Collapse
|
41
|
Chou TC, Hsu W, Wang CH, Chen YJ, Fang JM. Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J Nanobiotechnology 2011; 9:52. [PMID: 22088100 PMCID: PMC3248366 DOI: 10.1186/1477-3155-9-52] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The timely and accurate diagnosis of specific influenza virus strains is crucial to effective prophylaxis, vaccine preparation and early antiviral therapy. The detection of influenza A viruses is mainly accomplished using polymerase chain reaction (PCR) techniques or antibody-based assays. In conjugation with the immunoassay utilizing monoclonal antibody, mass spectrometry is an alternative to identify proteins derived from a target influenza virus. Taking advantage of the large surface area-to-volume ratio, antibody-conjugated magnetic nanoparticles can act as an effective probe to extract influenza virus for sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and on-bead mass spectrometric analysis. RESULTS Iron oxide magnetic nanoparticles (MNP) were functionalized with H5N2 viral antibodies targeting the hemagglutinin protein and capped with methoxy-terminated ethylene glycol to suppress nonspecific binding. The antibody-conjugated MNPs possessed a high specificity to H5N2 virus without cross-reactivity with recombinant H5N1 viruses. The unambiguous identification of the captured hemagglutinin on magnetic nanoparticles was realized by SDS-PAGE visualization and peptide sequence identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CONCLUSIONS The assay combining efficient magnetic separation and MALDI-MS readout offers a rapid and sensitive method for virus screening. Direct on-MNP detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provided high sensitivity (~10(3) EID(50) per mL) and a timely diagnosis within one hour. The magnetic nanoparticles encapsulated with monoclonal antibodies could be used as a specific probe to distinguish different subtypes of influenza.
Collapse
Affiliation(s)
- Tzu-Chi Chou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Jang HB, Sung HW, Nho SW, Park SB, Cha IS, Aoki T, Jung TS. Enhanced reliability of avian influenza virus (AIV) and Newcastle disease virus (NDV) identification using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Anal Chem 2011; 83:1717-25. [PMID: 21294514 DOI: 10.1021/ac102846q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In-solution enzymatic and nonenzymatic digestion methods have been successfully implemented in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS)-based virus identification, extending to typing/subtyping of deadly influenza viruses. However, these methods are inefficient in obtaining more precise information on surface proteins of myxovirus particles, not only the hemagglutinin and neuraminidase of influenza virus but also the hemagglutinin-neuraminidase of Newcastle disease virus (NDV). Imbalances in viral protein composition cause ion suppression of tryptic fragments from low-abundant target proteins (surface proteins), adversely affecting reproducibility of mass spectra. Additionally, the coexistence of tryptic peptides from several proteins requires sophisticated statistical solutions for precise result interpretations. To circumvent these, we apply detergent-based (gel-free) partitioning of whole viruses into soluble surface proteins and insoluble virus materials, using differential centrifugation. MALDI-TOF or MALDI-TOF/TOF MS was applied to analyze tryptic peptides from separated viral proteins. In this study, we achieved type/subtype of avian influenza virus (AIV) within 5 h, based on 4 major proteins, by significantly reducing ion suppression and signal overlap from various protein sources. Hence, our approach can both yield dependable results and allow Web-based search engines to be directly employed, obviating the need for additional statistical strategy. Additionally, we demonstrate the utility of the method using NDV.
Collapse
Affiliation(s)
- Ho Bin Jang
- Aquatic Biotechnology Center of WCU project, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Ha JW, Schwahn AB, Downard KM. Proteotyping to establish gene origin within reassortant influenza viruses. PLoS One 2011; 6:e15771. [PMID: 21305059 PMCID: PMC3031537 DOI: 10.1371/journal.pone.0015771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/25/2010] [Indexed: 11/17/2022] Open
Abstract
The application of a rapid and direct proteotyping approach with which to identify the gene origin of viral antigens in a reassortant influenza strain is demonstrated. The reassortant strain, constructed for a vaccine against type A 2009 H1N1 pandemic influenza, contains genes derived from a wild-type pandemic strain (A/California/7/2009) and an egg adapted high-growth strain (denoted NYMC X-157) derived from an earlier A/Puerto Rico/8/34 strain. The proteotyping approach employs modern proteomics methods and high resolution mass spectrometry to correctly establish that the genes of the surface antigens, hemagglutinin and neuraminidase, are derived from the A/California/7/2009 strain while those for nucleoprotein and matrix protein M1 antigens are derived from the NYMC X-157 strain. This is achieved for both gel-separated antigens and those from a whole vaccine digest. Furthermore, signature peptides detected in the mass spectra of the digested antigens enable the engineered reassortant strain to be identified as a type A virus of the H1N1 subtype in accord with earlier studies. The results demonstrate that proteotyping approach provides a more direct and rapid approach over RT-PCR with which to characterize reassortant strains of the influenza virus at the molecular protein level. Given that these strains pose the greatest risk to human and animal health and have been responsible for all human pandemics of the 20th and 21st centuries, there is a vital need for the origins and evolutionary history of these strains to be rapidly established.
Collapse
Affiliation(s)
- Ji-won Ha
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
44
|
Ha JW, Downard KM. Evolution of H5N1 influenza virus through proteotyping of hemagglutinin with high resolution mass spectrometry. Analyst 2011; 136:3259-67. [DOI: 10.1039/c1an15354d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Schwahn AB, Downard KM. Proteotyping to establish the lineage of type A H1N1 and type B human influenza virus. J Virol Methods 2010; 171:117-22. [PMID: 20970456 DOI: 10.1016/j.jviromet.2010.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The ability to establish the lineage of type A H1N1 and type B human influenza virus strains using a new proteotyping approach is demonstrated. Lineage-specific signature peptides have been determined for the hemagglutinin antigen of type A H1N1 and type B influenza viruses. The detection of these peptides alone within the high resolution mass spectra of whole antigen digests enables the lineage of the strain to be rapidly and unequivocally assigned. This proteotyping approach complements conventional PCR approaches and should aid in the monitoring of the evolution of the influenza virus in both humans and animals.
Collapse
Affiliation(s)
- Alexander B Schwahn
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
46
|
Schwahn AB, Wong JWH, Downard KM. Rapid differentiation of seasonal and pandemic H1N1 influenza through proteotyping of viral neuraminidase with mass spectrometry. Anal Chem 2010; 82:4584-90. [PMID: 20443622 DOI: 10.1021/ac100594j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signature peptides of the neuraminidase antigen across all common circulating human subtypes of type A and B influenza are identified through the bioinformatic alignment of translated gene sequences. The detection of these peptides within the high-resolution mass spectra of whole antigen, virus, and vaccine digests enables the strains to be rapidly and directly typed and subtyped. Importantly, unique signature peptides for pandemic (H1N1) 2009 influenza are identified and detected that enable pandemic strains to be rapidly and directly differentiated from seasonal type A (H1N1) influenza strains. The detection of these peptides can enable the origins of the neuraminidase gene to be monitored in the case of reassorted strains.
Collapse
Affiliation(s)
- Alexander B Schwahn
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
47
|
Creskey MC, Smith DGS, Cyr TD. Strain identification of commercial influenza vaccines by mass spectrometry. Anal Biochem 2010; 406:193-203. [PMID: 20667441 DOI: 10.1016/j.ab.2010.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 11/27/2022]
Abstract
Current influenza vaccine manufacturing and testing timelines require that the constituent hemagglutinin (HA) and neuraminidase (NA) strains be selected each year approximately 10 months before the vaccine becomes available. The threat of a pandemic influenza outbreak requires that more rapid testing methods be found. We have developed a specialized on-filter sample preparation method that uses both trypsin and chymotrypsin to enzymatically digest peptide-N-glycosidase F (PNGase F)-deglycosylated proteins in vaccines. In tandem with replicate liquid chromatography-mass spectrometry (LC-MS) analyses, this approach yields sufficient protein sequencing data (>85% sequence coverage on average) for strain identification of HA and NA components. This has allowed the confirmation, and in some cases the correction, of the identity of the influenza strains in recent commercial vaccines as well as the correction of some ambiguous HA sequence annotations in available databases. This method also allows the identification of low-level contaminant egg proteins produced during the manufacturing process.
Collapse
Affiliation(s)
- Marybeth C Creskey
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | |
Collapse
|
48
|
Wong JWH, Schwahn AB, Downard KM. FluTyper-an algorithm for automated typing and subtyping of the influenza virus from high resolution mass spectral data. BMC Bioinformatics 2010; 11:266. [PMID: 20482883 PMCID: PMC3098065 DOI: 10.1186/1471-2105-11-266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High resolution mass spectrometry has been employed to rapidly and accurately type and subtype influenza viruses. The detection of signature peptides with unique theoretical masses enables the unequivocal assignment of the type and subtype of a given strain. This analysis has, to date, required the manual inspection of mass spectra of whole virus and antigen digests. RESULTS A computer algorithm, FluTyper, has been designed and implemented to achieve the automated analysis of MALDI mass spectra recorded for proteolytic digests of the whole influenza virus and antigens. FluTyper incorporates the use of established signature peptides and newly developed naïve Bayes classifiers for four common influenza antigens, hemagglutinin, neuraminidase, nucleoprotein, and matrix protein 1, to type and subtype the influenza virus based on their detection within proteolytic peptide mass maps. Theoretical and experimental testing of the classifiers demonstrates their applicability at protein coverage rates normally achievable in mass mapping experiments. The application of FluTyper to whole virus and antigen digests of a range of different strains of the influenza virus is demonstrated. CONCLUSIONS FluTyper algorithm facilitates the rapid and automated typing and subtyping of the influenza virus from mass spectral data. The newly developed naïve Bayes classifiers increase the confidence of influenza virus subtyping, especially where signature peptides are not detected. FluTyper is expected to popularize the use of mass spectrometry to characterize influenza viruses.
Collapse
Affiliation(s)
- Jason W H Wong
- Prince of Wales Clinical School & Lowy Cancer Research Centre, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
49
|
Schwahn AB, Wong JWH, Downard KM. Typing of human and animal strains of influenza virus with conserved signature peptides of matrix M1 protein by high resolution mass spectrometry. J Virol Methods 2010; 165:178-85. [PMID: 20117137 DOI: 10.1016/j.jviromet.2010.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/06/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
The use of high resolution mass spectrometry to detect signature peptides within proteolytic digests of the isolated matrix M1 protein, and whole virus digests, for both human and animal strains of influenza is shown to be able to rapidly and reliably type the virus. Conserved sequences for predicted tryptic peptides were identified through alignments of matrix M1 protein sequences across all human, avian and swine strains of the influenza virus. Peptides with unique masses, when compared with those from the in silico digestion of all influenza antigens and those proteins known to contaminate egg grown strains, were identified using the purpose built FluGest algorithm. Their frequency of occurrence within the matrix M1 protein across all type A and type B strains was established with the FluAlign algorithm. The subsequent detection of the signature peptides of matrix M1 protein within proteolytic digests of type A and type B human and avian strains has been demonstrated.
Collapse
Affiliation(s)
- Alexander B Schwahn
- School of Molecular & Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
50
|
Schwahn AB, Wong JWH, Downard KM. Rapid typing and subtyping of vaccine strains of the influenza virus with high resolution mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:321-329. [PMID: 20530822 DOI: 10.1255/ejms.1056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The application of high-resolution mass spectrometry to type and subtype strains of the influenza virus within recent recommended vaccine formulations is described. Proteolytic digests of whole virus or separated hemagglutinin antigen generate conserved signature peptides of unique mass that can be used to characterise each component virus in a rapid and direct manner by the detection of their ions alone. The approach is demonstrated for two type A strains and one type B strain of human influenza viruses present in recommended seasonal vaccines in the northern and southern hemispheres from 2007 through 2010.
Collapse
Affiliation(s)
- Alexander B Schwahn
- School of Molecular & Microbial Biosciences G-08, University of Sydney, NSW, Australia
| | | | | |
Collapse
|