1
|
Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS MEASUREMENT SCIENCE AU 2022; 2:385-404. [PMID: 36785658 PMCID: PMC9885950 DOI: 10.1021/acsmeasuresciau.2c00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
In the decade after being awarded the Nobel Prize in Chemistry in 2002, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an analytical chemistry tool for the detection of large and small molecules (e.g., polymers, proteins, peptides, nucleic acids, amino acids, lipids, etc.) and for clinical analysis and research (e.g., pathogen identification, genetic disorders screening, cancer diagnosis, etc.). In view of the fast development of MALDI-TOF MS in clinical usage, this review systematically summarizes the most important applications of MALDI-TOF MS in clinical analysis and research by analyzing MALDI TOF MS-related reviews collected in the Web of Science database. On the basis of the analysis of keyword co-occurrence of over 2000 review articles, four themes consisting of "pathogen identification", "disease diagnosis", "nucleic acids analysis", and "small molecules analysis" were found. For each theme, the review further outlined their application implications, analytical methods, and systems as well as limitations that need to be addressed. Overall, the review summarizes and elaborates on the clinical applications of MALDI-TOF MS, providing a comprehensive picture for researchers embarking on MALDI TOF MS-related clinical analysis and research.
Collapse
|
2
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Patel VD, Shamsi SA, Sutherland K. Capillary electromigration techniques coupled to mass spectrometry: Applications to food analysis. Trends Analyt Chem 2021; 139. [DOI: 10.1016/j.trac.2021.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:1-17. [DOI: 10.1016/j.jchromb.2019.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
|
5
|
Advances in capillary electrophoresis for the life sciences. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:116-136. [PMID: 31035134 DOI: 10.1016/j.jchromb.2019.04.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Capillary electrophoresis (CE) played an important role in developments in the life sciences. The technique is nowadays used for the analysis of both large and small molecules in applications where it performs better than or is complementary to liquid chromatographic techniques. In this review, principles of different electromigration techniques, especially capillary isoelectric focusing (CIEF), capillary gel (CGE) and capillary zone electrophoresis (CZE), are described and recent developments in instrumentation, with an emphasis on mass spectrometry (MS) coupling and microchip CE, are discussed. The role of CE in the life sciences is shown with applications in which it had a high impact over the past few decades. In this context, current practice for the characterization of biopharmaceuticals (therapeutic proteins) is shown with CIEF, CGE and CZE using different detection techniques, including MS. Subsequently, the application of CGE and CZE, in combination with laser induced fluorescence detection and CZE-MS are demonstrated for the analysis of protein-released glycans in the characterization of biopharmaceuticals and glycan biomarker discovery in biological samples. Special attention is paid to developments in capillary coatings and derivatization strategies for glycans. Finally, routine CE analysis in clinical chemistry and latest developments in metabolomics approaches for the profiling of small molecules in biological samples are discussed. The large number of CE applications published for these topics in recent years clearly demonstrates the established role of CE in life sciences.
Collapse
|
6
|
Mikšík I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci 2018; 42:385-397. [PMID: 30238606 DOI: 10.1002/jssc.201800817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix-assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications-mainly bottom-up and top-down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.
Collapse
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| |
Collapse
|
7
|
Pontillo C, Filip S, Borràs DM, Mullen W, Vlahou A, Mischak H. CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 2015; 9:322-34. [DOI: 10.1002/prca.201400115] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Claudia Pontillo
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Szymon Filip
- Charité-Universitätsmedizin Berlin; Berlin Germany
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Daniel M. Borràs
- Department of R&D; ServiceXS; Leiden The Netherlands
- Institut National de la Santé et de la Recherche Médicale (INSERM); Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; Toulouse France
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
- School of Biomedical and Healthcare Sciences; Plymouth University; Plymouth UK
| | - Harald Mischak
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
8
|
Deng Y, Gasilova N, Qiao L, Zhou YL, Zhang XX, Girault HH. Highly sensitive detection of five typical fluoroquinolones in low-fat milk by field-enhanced sample injection-based CE in bubble cell capillary. Electrophoresis 2014; 35:3355-62. [DOI: 10.1002/elps.201400294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Yan Deng
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing China
- Laboratoire d'Electrochimie Physique et Analytique; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Natalia Gasilova
- Laboratoire d'Electrochimie Physique et Analytique; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Liang Qiao
- Laboratoire d'Electrochimie Physique et Analytique; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing China
| | - Hubert H. Girault
- Laboratoire d'Electrochimie Physique et Analytique; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| |
Collapse
|
9
|
Biacchi M, Bhajun R, Saïd N, Beck A, François YN, Leize-Wagner E. Analysis of monoclonal antibody by a novel CE-UV/MALDI-MS interface. Electrophoresis 2014; 35:2986-95. [PMID: 25070377 DOI: 10.1002/elps.201400276] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product- and time-consuming. CE-MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off-line CE-UV/MALDI-MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI-MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI-MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE-UV/MALDI-MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.
Collapse
Affiliation(s)
- Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), CNRS-UMR 7140, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
10
|
Zhong X, Zhang Z, Jiang S, Li L. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS. Electrophoresis 2013; 35:1214-25. [PMID: 24170529 DOI: 10.1002/elps.201300451] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
Abstract
Coupling CE-based separation techniques to MS creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI-MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with recently developed CE-MS platforms are also highlighted.
Collapse
Affiliation(s)
- Xuefei Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
11
|
Küster SK, Fagerer SR, Verboket PE, Eyer K, Jefimovs K, Zenobi R, Dittrich PS. Interfacing Droplet Microfluidics with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Label-Free Content Analysis of Single Droplets. Anal Chem 2013; 85:1285-9. [DOI: 10.1021/ac3033189] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon K. Küster
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Stephan R. Fagerer
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Pascal E. Verboket
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Konstantins Jefimovs
- Laboratory for Electronics/Metrology/Reliability
EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, 8600 Dübendorf,
Switzerland
| | - Renato Zenobi
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Petra S. Dittrich
- Department of Chemistry and
Applied Biosciences, ETH Zürich,
Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
13
|
Gorbatsova J, Borissova M, Kaljurand M. Electrowetting on dielectric actuation of droplets with capillary electrophoretic zones for MALDI mass spectrometric analysis. Electrophoresis 2012; 33:2682-8. [DOI: 10.1002/elps.201200096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Zhang Z, Ye H, Wang J, Hui L, Li L. Pressure-assisted capillary electrophoresis coupling with matrix-assisted laser desorption/ionization-mass spectrometric imaging for quantitative analysis of complex peptide mixtures. Anal Chem 2012; 84:7684-91. [PMID: 22891936 DOI: 10.1021/ac300628s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we report a pressure-assisted capillary electrophoresis-mass spectrometric imaging (PACE-MSI) platform for peptide analysis. This new platform has addressed the sample diffusion and peak splitting problems that appeared in our previous groove design, and it enables homogeneous deposition of the CE trace for high-throughput MALDI imaging. In the coupling of CE to MSI, individual peaks (m/z) can be visualized as discrete colored image regions and extracted from the MS imaging data, thus eliminating issues with peak overlapping and reducing reliance on an ultrahigh mass resolution mass spectrometer. Through a PACE separation, 46 tryptic peptides from bovine serum albumin and 150 putative neuropeptides from the pericardial organs of a model organism blue crab Callinectes sapidus were detected from the MALDI MS imaging traces, enabling a 4- to 6-fold increase of peptide coverage as compared with direct MALDI MS analysis. For the first time, quantitation with high accuracy was obtained using PACE-MSI for both digested tryptic peptides and endogenous neuropeptides from complex biological samples in combination with isotopic formaldehyde labeling. Although MSI is typically employed in tissue imaging, we show in this report that it offers a unique tool for quantitative analysis of complex trace-level analytes with CE separation. These results demonstrate a great potential of the PACE-MSI platform for enhanced quantitative proteomics and neuropeptidomics.
Collapse
Affiliation(s)
- Zichuan Zhang
- School of Pharmacy, University of Wisconsin, Madison, 53705, United States
| | | | | | | | | |
Collapse
|
15
|
Qiao L, Sartor R, Gasilova N, Lu Y, Tobolkina E, Liu B, Girault HH. Electrostatic-Spray Ionization Mass Spectrometry. Anal Chem 2012; 84:7422-30. [DOI: 10.1021/ac301332k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Qiao
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Romain Sartor
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Natalia Gasilova
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Yu Lu
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Elena Tobolkina
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Baohong Liu
- Department of Chemistry, Institute
of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique
et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Gasilova N, Gassner AL, Girault HH. Analysis of major milk whey proteins by immunoaffinity capillary electrophoresis coupled with MALDI-MS. Electrophoresis 2012; 33:2390-8. [DOI: 10.1002/elps.201200079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Natalia Gasilova
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| | - Anne-Laure Gassner
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| | - Hubert H. Girault
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| |
Collapse
|
17
|
Ramautar R, Heemskerk AAM, Hensbergen PJ, Deelder AM, Busnel JM, Mayboroda OA. CE-MS for proteomics: Advances in interface development and application. J Proteomics 2012; 75:3814-28. [PMID: 22609513 DOI: 10.1016/j.jprot.2012.04.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful technique for the analysis of proteins and peptides. Over the past few years, significant progress has been made in the development of novel and more effective interfaces for hyphenating CE to MS. This review provides an overview of these new interfacing techniques for coupling CE to MS, covering the scientific literature from January 2007 to December 2011. The potential of these new CE-MS interfacing techniques is demonstrated within the field of (clinical) proteomics, more specifically "bottom-up" proteomics, by showing examples of the analysis of various biological samples. The relevant papers on CE-MS for proteomics are comprehensively summarized in tables, including, e.g. information on sample type and pretreatment, interfacing and MS detection mode. Finally, general conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Heemskerk AAM, Busnel JM, Schoenmaker B, Derks RJE, Klychnikov O, Hensbergen PJ, Deelder AM, Mayboroda OA. Ultra-Low Flow Electrospray Ionization-Mass Spectrometry for Improved Ionization Efficiency in Phosphoproteomics. Anal Chem 2012; 84:4552-9. [DOI: 10.1021/ac300641x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthonius A. M. Heemskerk
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Marc Busnel
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Beckman Coulter, Inc., Brea, California 92821, United States
| | - Bart Schoenmaker
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rico J. E. Derks
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleg Klychnikov
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J. Hensbergen
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - André M. Deelder
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleg A. Mayboroda
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Abstract
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues.
Collapse
Affiliation(s)
- Xin Xu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
20
|
Gorbatsova J, Borissova M, Kaljurand M. Electrowetting-on-dielectric actuation of droplets with capillary electrophoretic zones for off-line mass spectrometric analysis. J Chromatogr A 2012; 1234:9-15. [DOI: 10.1016/j.chroma.2011.12.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/21/2011] [Accepted: 12/16/2011] [Indexed: 01/03/2023]
|
21
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
22
|
Pourhaghighi MR, Busnel JM, Girault HH. High-sensitive protein analysis by FESI-CE-MALDI-MS. Electrophoresis 2011; 32:1795-803. [DOI: 10.1002/elps.201100024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 11/06/2022]
|
23
|
Wang J, Ye H, Zhang Z, Xiang F, Girdaukas G, Li L. Advancing matrix-assisted laser desorption/ionization-mass spectrometric imaging for capillary electrophoresis analysis of peptides. Anal Chem 2011; 83:3462-9. [PMID: 21417482 DOI: 10.1021/ac200708f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the utilization of matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) for capillary electrophoresis (CE) analysis of peptides based on a simple and robust off-line interface has been investigated. The interface involves sliding the CE capillary distal end within a machined groove on a MALDI sample plate, which is precoated with a thin layer of matrix for continuous sample deposition. MALDI-MSI by time of flight (TOF)/TOF along the CE track enables high-resolution and high-sensitivity detection of peptides, allowing the reconstruction of a CE electropherogram while providing accurate mass measurements and structural identification of molecules. Neuropeptide standards and their H/D isotopic formaldehyde-labeled derivatives were analyzed using this new platform. Normalized intensity ratios of individual ions extracted from the CE trace were compared to MALDI-MS direct analysis and the theoretical ratios. The CE-MALDI-MSI results show potential for sensitive and quantitative analysis of peptide mixtures spanning a wide dynamic range.
Collapse
Affiliation(s)
- Junhua Wang
- School of Pharmacy, University of Wisconsin-Madison, 53705, United States
| | | | | | | | | | | |
Collapse
|
24
|
Protéomique et médecine transfusionnelle. Transfus Clin Biol 2011; 18:79-96. [DOI: 10.1016/j.tracli.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 01/02/2023]
|
25
|
Pantůčková P, Gebauer P, Boček P, Křivánková L. Recent advances in CE-MS: Synergy of wet chemistry and instrumentation innovations. Electrophoresis 2010; 32:43-51. [PMID: 21171112 DOI: 10.1002/elps.201000382] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/29/2023]
Abstract
CE with MS detection is a hyphenated technique which greatly improves the ability of CE to deal with real samples, especially with those coming from biology and medicine, where the target analytes are present as trace amounts in very complex matrices. CE-MS is now almost a routine technique performed on commercially available instruments. It faces currently a tremendous development of the technique itself as well as of its wide application area. Great interest in CE-MS is reflected in the scientific literature by many original research articles and also by numerous reviews. The review presented here has a general scope and belongs to a series of regularly published reviews on the topic. It covers the literature from the last 2 years, since January 2008 till June 2010. It brings a critical selection of related literature sorted into groups reflecting the main topics of actual scientific interest: (i) innovations in CE-ESI-MS, (ii) use of alternative interfaces, and (iii) ways to enhance sensitivity. Special attention is paid to novel electrolyte systems amenable to CE-MS including nonvolatile BGEs, to advanced CE separation principles such as MEKC, MEEKC, chiral CE, and to the use of preconcentration techniques.
Collapse
Affiliation(s)
- Pavla Pantůčková
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
26
|
Busnel JM, Schoenmaker B, Ramautar R, Carrasco-Pancorbo A, Ratnayake C, Feitelson JS, Chapman JD, Deelder AM, Mayboroda OA. High Capacity Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry: Coupling a Porous Sheathless Interface with Transient-Isotachophoresis. Anal Chem 2010; 82:9476-83. [DOI: 10.1021/ac102159d] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Marc Busnel
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Bart Schoenmaker
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Rawi Ramautar
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Alegria Carrasco-Pancorbo
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Chitra Ratnayake
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Jerald S. Feitelson
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Jeff D. Chapman
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - André M. Deelder
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| | - Oleg A. Mayboroda
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands, and Beckman Coulter, Inc., Brea, California 92822, United States
| |
Collapse
|
27
|
Peš O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A 2010; 1217:3966-77. [DOI: 10.1016/j.chroma.2010.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
|
28
|
Affiliation(s)
- Nicholas W. Frost
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Meng Jing
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
29
|
Vannatta MW, Whitmore CD, Dovichi NJ. CE-MALDI interface based on inkjet technology. Electrophoresis 2010; 30:4071-4. [PMID: 19960472 DOI: 10.1002/elps.200900414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An ink jet printer valve and a nozzle were used to deliver matrix and sample from an electrophoresis capillary onto a MALDI plate. The system was evaluated by the separation of a set of standard peptides. That separation generated up to 40 000 theoretical plates in less than 3 min. Detection limits were 500 amol for an ABI TOF-TOF instrument and 2 fmol for an ABI Q-TOF instrument. Over 70% coverage was obtained for the tryptic digest of alpha-lactalbumin in less than 2.5 min.
Collapse
|
30
|
Bi H, Qiao L, Busnel JM, Liu B, Girault HH. Kinetics of Proteolytic Reactions in Nanoporous Materials. J Proteome Res 2009; 8:4685-92. [DOI: 10.1021/pr9003954] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyan Bi
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland, and Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Liang Qiao
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland, and Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jean-Marc Busnel
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland, and Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Baohong Liu
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland, and Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland, and Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|