1
|
Ning J, Ye J, Wang Q, Wang W. Indirect and sensitive determination of microRNAs by magnetic field-assisted capillary sieving electrophoresis combined with catalytic hairpin assembly. J Sep Sci 2024; 47:e2400166. [PMID: 39034496 DOI: 10.1002/jssc.202400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
To determine multiple microRNAs (miRNAs) from cells simultaneously is essential for understanding biological functions. Capillary electrophoresis (CE) can simultaneously determine multiple miRNAs by separation. Nevertheless, similar lengths and low concentrations in cells make miRNAs hard to separate and detect. In this study, CE with laser-induced fluorescence detection was combined with catalytic hairpin assembly (CHA) to determine three miRNAs, miR-21, miR-31, and miR-122. The amplification products of CHA, which were DNA duplexes, were designed to have different lengths for different miRNAs. This allowed for easy separation of the duplexes of different miRNAs by CE. The indirect determination of miRNAs was then achieved by separating and detecting these duplexes. A magnetic field was first applied on the capillary sieving electrophoresis to assist in the separation of the duplexes. Under the optimal conditions, the three duplexes could be completely separated within 2.5 min with the detection limits of miRNAs in the range 1.12-4.05 × 10-15 M. MiR-21 and miR-31 were successfully determined from Hela cells, while miR-122 was determined from chicken livers by this method. The recoveries ranged from 97.5% to 118%. The developed method was sensitive and reliable for miRNA determination.
Collapse
Affiliation(s)
- Jinfeng Ning
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Junlan Ye
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
2
|
Zhang S, Wang Q, Ning J, Wang W. Nucleic acid strand displacement for indirect determination of foodborne bacteria by capillary electrophoresis and its application in antagonism and bacteriostasis studies. Electrophoresis 2024; 45:318-326. [PMID: 37824215 DOI: 10.1002/elps.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Foodborne bacteria threaten human's health. Capillary electrophoresis (CE) is a powerful separation means for the determination of bacteria. Direct separation of bacteria suffers from the shortages of low resolution, channel adsorption, and bacterial aggregation. In this work, a method of nucleic acid strand displacement was developed to indirect separate the bacteria by CE. DNA complexes, consisting of probes and aptamers, were mixed with the three bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The aptamers could specifically bond with bacteria and release the probes. Through the separation of the probes, the bacteria could be indirectly determined by CE. This method avoided the shortages of direct separation of bacteria. Under the optimized conditions, the three probes for the bacteria could be separated and detected within 2.5 min by high-speed CE with laser-induced fluorescence detection. The limits of detection for the bacteria were in the range 4.20 × 106 to 1.75 × 107 CFU/mL. Finally, the developed method was applied on the study of antagonism of the coexistent bacteria to reveal the relationship between them. Furthermore, the efficiency of bacteriostasis of three traditional Chinese medicines, Coptis chinensis, Schisandra chinensis, and honeysuckle, was also studied by this method.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Jinfeng Ning
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
3
|
Yin B, Zhang Z, Wang Y, Zeng H, Xu J, Li H, Li Y, Zhang M. Compact contactless conductometric, ultraviolet photometric and dual-detection cells for capillary electrophoresis via additive manufacturing. J Chromatogr A 2023; 1712:464469. [PMID: 37924616 DOI: 10.1016/j.chroma.2023.464469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
The growing demand for tailored detectors in capillary electrophoresis (CE), addressing tasks like field deployment or dual-detection analysis, emphasizes the necessity for compact detection cells. In this work, we propose cost-effective and user-friendly additive manufacturing (3D-printing) approaches to produce such miniaturized detection cells suitable for a range of CE applications. Firstly, capacitively-coupled contactless conductivity detection (C4D) cells of different sizes are fabricated by casting low-melting-point alloy into 3D-printed molds. Various designs of Faraday shields are integrated within the cells and compared. A mini-C4D cell (9.5×7.0×7.5 mm3) is produced, with limits of detection for alkaline cations ranging from 8-12 μM in a short-capillary based CE application. Secondly, ultraviolet photometric (UV-PD) detection cells are fabricated using 3D printing. These cells feature two narrow slits with a width of 60 μm, which are positioned along the path of incident and transmission light to facilitate collimation. A deep UV-LED (235 nm or 255 nm) is employed as the light source, and black resin is determined to be the optimal material for 3D printing the UV-PD cell, owing to its superior UV light absorption capabilities. The UV-PD cell is connected to the LED and photodetector through two optical fibers, making it easy to switch the light source and detector. The effective pathlength and stray light percentage for detecting on a 75 μm id capillary are 74 μm and 0.5 %, respectively. Thirdly, a dual-detection cell that combined C4D and UV-PD at a single detection point is proposed. The performance of direct detection by C4D and indirect detection by UV-PD is compared for detecting organic acids. The strategies for developing cost-effective compact detection cells facilitate the versatile integration of multiple detection methods in CE analysis.
Collapse
Affiliation(s)
- Bangjie Yin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zheng Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yingchun Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hongzhou Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
4
|
Itterheimová P, Kubáň P. An open source 3D printed autosampler for capillary electrophoresis. Anal Chim Acta 2023; 1279:341832. [PMID: 37827625 DOI: 10.1016/j.aca.2023.341832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In-house built capillary electrophoresis (CE) systems represent a significant share of laboratory instrumentation. In most of these instruments, sample injection is effected manually with low to moderate precision and requires skilled operators. Although few automated samplers have been previously developed, typically only one sample at a time can be injected. If a series of samples is to be analyzed, manual intervention is required. In the present work, we developed and constructed a fully automated, open source, CE autosampler, able to handle up to 14 different samples that can be used as a modular component of any in-house built CE instrument. RESULTS An inexpensive, 3D printed, open source, autosampler for CE was developed. The autosampler consists of two parts: an injection unit with carousel containing sample and electrolyte vials and a flushing unit, containing a miniature pressure/vacuum pump. The autosampler is operated by an Arduino Mega microcontroller and an Arduino code written in the laboratory. The injection sequence is entered through a keypad and LCD display by the user. The instrument can operate autonomously for extended periods of time. It was used for fully automated analysis and/or calibration of up to 14 samples with excellent injection repeatability reaching less than 2.7% RSD for peak areas. The sampler performance was tested with two independently built CE instruments, a CE system with contactless conductivity detection (C4D) and a CE system with laser induced fluorescence (LIF) detector. SIGNIFICANCE AND NOVELTY A novel, 3D printed, Arduino-based autosampler for CE was developed. The autosampler allows autonomous hydrodynamic injection of up to 14 different samples with fully programmable injection sequence, including capillary flushing and high voltage and data acquisition control. It provides the missing instrumental sampling setup for laboratory made CE instruments. It can be simply constructed based on the open-source blueprints in any laboratory and be a useful and time-saving add-on to any modular CE instrument.
Collapse
Affiliation(s)
- Petra Itterheimová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic; CEITEC Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Liu X, Liang W, Zeng H, Jiang Y, Li Y, Zhang M. 3D printed cartridge for high-speed capillary electrophoresis with sheath liquid thermostatting and contactless conductivity detection. Anal Chim Acta 2023; 1264:341235. [PMID: 37230716 DOI: 10.1016/j.aca.2023.341235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
The high-speed capillary electrophoresis (HSCE) method is a technique that utilizes a high electric field strength applied through a short capillary to reduce the time required for sample separation. However, the increased electric field strength may result in pronounced Joule heating effects. To address this, we describe a 3D-printed cartridge with integrated contactless conductivity detection (C4D) head and a sheath liquid channel. The C4D electrodes and Faraday shield layers are fabricated by casting Wood's metal in chambers inside the cartridge. Effective thermostatting of the short capillary is achieved by flowing Fluorinert liquid, which provides better heat dissipation compared to airflow. A HSCE device is created by using the cartridge and a modified slotted-vial array sample-introduction approach. Analytes are introduced through electrokinetic injection. With the help of sheath liquid thermostatting, background electrolyte concentration can be increased to several hundred mM, resulting in improved sample stacking and peak resolutions. Additionally, the baseline signal is flattened. Typical cations such as NH4+, K+, Na+, Mg2+, Li+, and Ca2+ can be separated within 22 s with an applied field strength of 1200 V/cm. The limit of detection ranges from 2.5 to 4.6 μM with a relative standard deviation of migration times of 1.1-1.2% (n = 17). The method has been applied to detect cations in drinking water and black tea leaching for drink safety testing, and to identify explosive anions in paper swabs. Samples can be directly injected without the need for dilution.
Collapse
Affiliation(s)
- Xing Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Wenshan Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| | - Yiyu Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
6
|
Zhang S, Ning J, Wang Q, Wang W. Fluorescence enhancement of flavonoids and its application in ingredient determination for some traditional Chinese medicines by CE-LIF. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37309583 DOI: 10.1039/d3ay00486d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavonoids are widely used in the treatment of various diseases due to their antioxidant, anti-inflammatory, anticancer and antiviral properties. Fluorescence detection is rarely applied for the determination of flavonoids because of their weak fluorescence. In this work, a method of fluorescence enhancement of flavonoids was firstly introduced by using sodium acetate for flavonoid derivatization. The study discovered that flavonoids, with a hydroxyl at the C3 position, had the ability to emit strong fluorescence after derivatization. Five flavonoids, kaempferide, galangin, isorhamnetin, kaempferol and quercetin, having a special structure, were selected, derivatized and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Under the optimal conditions, the five flavonoids could be completely separated within 3 minutes. Good linear relationships were obtained for all analytes and the limits of detection for the five flavonoids were in the range of 1.18-4.67 × 10-7 mol L-1. Finally, the method was applied to the determination of flavonoids in five traditional Chinese medicines: aster, chamomile, galangal, tangerine peel and cacumen biotae. Flavonoids were successfully found in all these medicines by the developed method. The recoveries were in the range of 84.2-111%. The method developed in this study was fast, sensitive and reliable for the determination of flavonoids.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Jinfeng Ning
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
7
|
Zhang L, Tan QG, Fan JQ, Sun C, Luo YT, Liang RP, Qiu JD. Microfluidics for chiral separation of biomolecules. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang MT, Peng YM, Pan JZ, Fang XX, Li HY, Zhang XY, Liao YC, Yao JK, Wu ML, Yao YY, Fang Q. LIFGO: A modular laser-induced fluorescence detection system based on plug-in blocks. Talanta 2021; 239:123063. [PMID: 34890938 DOI: 10.1016/j.talanta.2021.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
In this work, a laser-induced fluorescence (LIF) detection system built in a modular assembling mode was developed based on commercial LEGO blocks and 3D printed blocks. We designed and fabricated a variety of 3D printed building blocks fixed with optical components, including laser light source, filters, lens, dichroic mirror, photodiode detector, and control circuits. Utilizing the relatively high positioning precision of the plug-in blocks, a modular construction strategy was adopted using the flexible plug-in combination of the blocks to build a highly sensitive laser-induced fluorescence detection system, LIFGO. The LIFGO system has a simple structure which could be constructed by inexperienced users within 3 h. We optimized the structure and tested the performance of the LIFGO system, and its detection limits for sodium fluorescein solution in 100 μm i.d. and 250 μm i.d. capillaries were 7 nM and 0.9 nM, respectively. Based on the LIFGO system, we also built a simple capillary electrophoresis (CE) system and applied it to the analysis of DNA fragments to demonstrate its application possibility in biochemical analysis. The separation of 7 fragments in DL500 DNA markers were completed in 600 s. Because of the features of low cost (less than $100) and easy-to-build construction, we introduced the LIFGO system to the experimental teaching of instrumental analysis for undergraduate students. The modular construction form of the LIF detection system greatly reduces the threshold of instrument construction, which is conducive to the popularization of the LIF detection technique in routine laboratories as well as the reform of experimental teaching mode.
Collapse
Affiliation(s)
- Meng-Ting Zhang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Mei Peng
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Xiao-Xia Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Han-Yang Li
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Yang Zhang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Cheng Liao
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kang Yao
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Lin Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Yang Yao
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Yu RB, Quirino JP. Bile Salts in Chiral Micellar Electrokinetic Chromatography: 2000-2020. Molecules 2021; 26:molecules26185531. [PMID: 34577002 PMCID: PMC8468585 DOI: 10.3390/molecules26185531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Bile salts are naturally occurring chiral surfactants that are able to solubilize hydrophobic compounds. Because of this ability, bile salts were exploited as chiral selectors added to the background solution (BGS) in the chiral micellar electrokinetic chromatography (MEKC) of various small molecules. In this review, we aimed to examine the developments in research on chiral MEKC using bile salts as chiral selectors over the past 20 years. The review begins with a discussion of the aggregation of bile salts in chiral recognition and separation, followed by the use of single bile salts and bile salts with other chiral selectors (i.e., cyclodextrins, proteins and single-stranded DNA aptamers). Advanced techniques such as partial-filling MEKC, stacking and single-drop microextraction were considered. Potential applications to real samples, including enantiomeric impurity analysis, were also discussed.
Collapse
|
10
|
Li H, Guo C, Zhang Q, Bao L, Zheng Q, Guo Z, Chen Y. A substantial increase of analytical throughput in capillary electrophoresis throughput by separation-interrupted sequential injections. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1995-2004. [PMID: 33955989 DOI: 10.1039/d1ay00223f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
How to further improve the throughput of capillary electrophoresis (CE) is a fascinating question. Herein an idea to substantially increase the throughput of CE has been proposed together with theory and experimental demonstration. The key is to introduce samples for CE, one after another, by a short suspension of voltage application, which was hence termed separation-interrupted sequential injections (Sisi). The idea was demonstrated to be feasible on a laboratory-built CE instrument coupled with tandem C4D (contactless capacitively-coupled conductivity) detectors. At least 50 injections of a testing sample (mixture of NH4+, K+, Ca2+, Na+ and Mg2+) were successfully separated in only a single run. The separation took 145 min in total, equivalent to 2.9 min per analysis which is only 21% of that of normal CE. Quantification of the separated ions was performed, with a limit of detection of 1.1-2.6 μM, a limit of quantification of 3.2-8.9 μM, and a linear range up to 1000 μM (R2 > 0.99). The recovery was between 88% and 112% measured by spiking standards into samples at low, middle and high levels. The real applicability of Sisi-CE was evaluated by direct injection and analysis of 45 mineral water samples also in a single run. Its clinical application potential was demonstrated by high throughput assay of the calcium and zinc gluconate oral solution formula, and the blood potassium of hyperkalemia and hypokalemia from patients with renal failure disease. This method can be extended to other applications such as omics studies through the use of more suitable detectors. The theory proposed may also be applicable to other high throughput methods.
Collapse
Affiliation(s)
- Hongliang Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianchun Zhang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Linchun Bao
- Clinical Laboratory, Qian Xi Nan People's Hospital, Xingyi 562400, China
| | - Qingfeng Zheng
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenpeng Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Wang W, Zhang H, Yu X, Zhang S. Study of antagonism between some intestinal bacteria with high-speed micellar electrokinetic chromatography. Electrophoresis 2021; 42:1196-1201. [PMID: 33580526 DOI: 10.1002/elps.202000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
In this work, high-speed micellar electrokinetic chromatography with LIF detection was applied to study the antagonism between three intestinal bacteria, Escherichia coli (E. coli), Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis). The fluorescent derivatization for the bacteria was performed by labeling the bacteria with FITC. In a high-speed capillary electrophoresis (HSCE) device, the three bacteria could be completely separated within 4 min under the separation mode MEKC. The BGE was 1 × TBE containing 30 mM SDS and 1.5 × 10-5 g/mL polyethylene oxide. The limits of detection for E. coli, B. licheniformis and B. subtilis were 2.80 × 106 CFU/mL, 1.60 × 106 CFU/mL and 1.90 × 106 CFU/mL respectively. Lastly, the method was applied to investigate the antagonism between the three bacteria. The bacteria were mixed and cultured for 7 days. The samples were separated and determined every day to study the interaction between bacteria. The results showed that B. licheniformis and B. subtilis could not inhibit each other, but they could effectively inhibit the reproduction of E. coli. The method developed in this work was quick, sensitive and convenient, and it had great potential in the application of antagonism study for bacteria.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Xiufeng Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
12
|
Jin LH, Wei Y, Wang HF, Chen JB, Fang Q. Nanoliter-scale liquid metering and droplet generation based on a capillary array for high throughput screening. Talanta 2021; 221:121613. [PMID: 33076143 DOI: 10.1016/j.talanta.2020.121613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Herein, we developed a simple approach for quantitative metering of nanoliter-scale liquids in parallel based on a capillary array and applied it in high throughput screening protein crystallization conditions. The quantitative metering of liquids was achieved by using capillary force to spontaneously introduce the liquids into short capillaries with fixed length and inner diameter, and the nanoliter-scale droplets were generated by using a pneumatic pump to deliver liquids out from the capillary channels. We adopted measures of sharpening the capillary tips and performing a hydrophobic treatment on the tip surface to significantly reduce the capillary residues during the liquid aspirating and dispensing process, and thus improved the precision to 0.2%-3.5% relative standard deviations (RSD, n = 3) in metering droplets in the range of 280 pL-90 nL. We evaluated the performance of the system in metering liquids of different surface tensions and viscosity. On the basis of this approach, we built a capillary array system with 12 capillaries, by which parallel generation of 12 nL droplets of 12 samples could be achieved in 40 s with a relative standard deviation (RSD) of 1.2%. We applied the system in the screening of lysozyme crystallization conditions of 48 precipitants with 7.5 nL precipitant and 7.5 nL protein solutions in each crystallization droplet reactor, to demonstrate its potentials in large-scale high-throughput screening and analysis with different samples.
Collapse
Affiliation(s)
- Le-He Jin
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yan Wei
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Liénard-Mayor T, Taverna M, Descroix S, Mai TD. Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: A review. Anal Chim Acta 2020; 1143:281-297. [PMID: 33384124 DOI: 10.1016/j.aca.2020.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
In this study, for the first time we report on a comprehensive overview of different strategies to hyphenate droplet-based sample handling and preparation with electrophoretic separation in different formats (i.e. microchip and capillary electrophoresis). Droplet-interfaced electrophoresis is an emerging technique in which micro/nanometric droplets are used as a bridge and carrier of target analytes between sample treatment and electrokinetic separation steps, thus being expected to overcome the challenges of working dimension mismatch and low degree of module integration. This review covers all works on this topic from 2006 (the year of the first communication) up to 2020, with focus being given to three principal interfacing strategies, including droplets in immiscible phases, digital microfluidics with electrowetting-on-dielectric principle and inkjet droplet generation. Different instrumental developments for such purpose, the viewpoints on pros and cons of these designs as well as application demonstrations of droplet-interfaced electrokinetic strategies are discussed.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Institut Universitaire de France, France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
14
|
Dunn RC. High-Speed Capillary Electrophoresis Using a Thin-Wall Fused-Silica Capillary Combined with Backscatter Interferometry. Anal Chem 2020; 92:7540-7546. [PMID: 32352792 DOI: 10.1021/acs.analchem.9b05881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-speed capillary electrophoresis (HSCE) is implemented using a 10 cm total length fused-silica capillary (50 μm i.d., 80 μm o.d.) combined with refractive index (RI) detection using backscatter interferometry (BSI). The short capillary length reduces analysis time while the ultrathin wall (15 μm) efficiently dissipates heat from the separation channel, mitigating the deleterious effects of Joule heating. The separation capillary is mounted on a temperature-controlled heat sink that stabilizes the temperature to ±0.004 °C. This temperature stabilization improves separation efficiency and enhances RI detection. Ohm's Law plots confirm the superior heat dissipation of the HSCE capillary compared to a similarly prepared conventional CE capillary (50 μm i.d., 363 μm o.d.). The speed and efficiency of HSCE combined with universal RI detection is illustrated through the separation of K+, Ba2+, Mg2+, Na+, Li+, and Tris+ in approximately 30 s, with efficiencies greater than 500 000 plates/m. Run-to-run repeatability is explored using nine consecutive electrokinetic injections of a K+, Na+, and Li+ mixture. The average migration times and %RSD for K+, Na+, and Li+ were measured to be 22.04 s (1.59%), 26.81 s (1.38%), and 29.80 s (2.21%), respectively. Finally, we show that the BSI signal is sensitive to the separation voltage through the Kerr mechanism. This leads to peaks in the electropherogram from the injection process that are useful for precisely defining the start of each separation and quantifying the amount of sample injected onto the capillary.
Collapse
Affiliation(s)
- Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
15
|
Feng Y, Hu T, Fang P, Zhou L, Li W, Fang Q, Fang J. Consecutive and automatic detection of multi-gene mutations from colorectal cancer samples by coupling droplet array-based capillary electrophoresis and PCR-RFLP. Anal Bioanal Chem 2020; 412:3037-3049. [PMID: 32249344 DOI: 10.1007/s00216-020-02567-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of targeted therapy is associated with multi-gene mutation status. Carrying out effective multi-genotyping analysis in combination has been a challenge in clinical settings. We therefore developed a droplet-based capillary electrophoresis (CE) system coupled with PCR-restriction fragment length polymorphism (PCR-RFLP) technology to detect multi-gene mutations from a small volume of samples. A 16 × 16 200-nL droplet array for sample encapsulation was constructed on a glass chip. The electrophoresis system consisted of a tapered vertical capillary filled with polyvinylpyrrolidone, a laser-induced fluorescence detector, and a high voltage power supply. Notably, a droplet-based electrokinetic sample introduction method and a "∩" shape capillary were developed to facilitate consecutive droplet sampling using a home-made automatic control module. The DL2000 DNA marker was consecutively separated, achieving high migration time and plate number reproducibility. The system was further applied to detect PCR-RFLP products. For colorectal cancer (CRC) cell lines, KRAS, BRAF, and PIK3CA were genotyped with a sensitivity of 0.25%. For CRC patient specimens, 30 samples were consecutively and automatically multi-genotyped without inter-sample contamination, with a lowest mutation frequency of 0.37%. For the first time, we developed a droplet-based CE system for consecutive DNA analysis with low sample consumption. This automated CE system could be further developed to integrate the full process of gene mutation detection, serving as a more effective platform for individualised therapy.
Collapse
Affiliation(s)
- Yiming Feng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Tingting Hu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Pan Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Chemistry Experiment Building, Hangzhou, 310058, Zhejiang, China
| | - Linlin Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Chemistry Experiment Building, Hangzhou, 310058, Zhejiang, China.
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
16
|
Dong Z, Fang Q. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Ou X, Chen P, Huang X, Li S, Liu B. Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 2019; 43:258-270. [DOI: 10.1002/jssc.201900758] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsCollege of Chemistry and Life ScienceHubei University of Education Wuhan P. R. China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Xizhi Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
18
|
Wang W, Bai R, Zhang H, Cai X. Study of the effect of culture mediums on the amino acid metabolites for
Corynebacterium glutamicum
using high‐speed micellar electrokinetic chromatography. Electrophoresis 2019; 40:2665-2671. [DOI: 10.1002/elps.201900010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| |
Collapse
|
19
|
Wang W, Cai X, Lin P, Bai R. Separation and determination of microRNAs by high-speed capillary sieving electrophoresis. J Sep Sci 2018; 41:3925-3931. [PMID: 30136382 DOI: 10.1002/jssc.201800635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
In this work, high-speed capillary sieving electrophoresis with laser-induced fluorescence detection was applied to simultaneously determine three microRNAs. A developed manual sample introduction device for the high-speed capillary electrophoresis system was applied to perform sample injection. Strategies, including field-amplified sample injection and electrokinetic injection, were studied to improve the detection sensitivity. Under the optimal conditions, the limit of detection for DNA-159 could be lowered to 5.10 × 10-12 mol/L. In order to achieve enough separation resolution, two DNA probes were designed to have extra sequences that acted as the drag tails. Under the optimized conditions, the three DNA probes and the complexes of microRNA-156, microRNA-159, and microRNA-166 could be completely separated within 3.2 min in background electrolyte (pH 8.7) containing 2.0% m/m polyvinyl pyrrolidone and 0.4% m/m hydroxyethyl cellulose. The limits of detection for the three microRNAs were 0.051, 0.11, and 0.25 nmol/L, respectively. Then the method was applied to analyze the microRNAs spiked in the samples extracted from banana leaves. The recoveries ranged from 114.3 to 121.1% (n = 3). The results showed that the method developed in this work was an effective means for microRNA assay.
Collapse
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, School of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
20
|
Direct sample injection from a syringe needle into a separation capillary. Anal Chim Acta 2018; 1042:133-140. [PMID: 30428980 DOI: 10.1016/j.aca.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
An automatic micro-injector was developed for electrophoretic analysis of a microlitre amount of clinical samples, enabling injection of the sample from a Hamilton syringe. The outlet of the syringe needle is located directly opposite the inlet of the separation capillary at a defined distance of the order of hundreds of μm in the injection space. During the injection, the background electrolyte is forced out by air from this space and a drop of the sample is forced out of the syringe by a micro-pump so that it is caught at the entrance to the capillary. From the drop the sample is injected into the capillary by applying a negative pressure pulse or simply by spontaneous injection. The injection space is then filled with background electrolyte, which washes away excess sample and separation is commenced. The injector was tested in electrophoretic separation of a model sample with equimolar concentrations of 100 μM NH4+, K+, Na+, Mg2+ and Li+ in a short capillary with total/effective length of 16.5/11.5 cm. The repeatability of the migration time and peak area expressed as the RSD value is 2% and 4%, respectively. The practical applicability of the injector was verified on the determination of the antiparasitic pentamidine in 10 μL of rat plasma. Electrophoretic separation of pentamidine was performed in 100 mM of acetic acid/NaOH at pH 4.55, the sample consumption per analysis is 125 nL, the separation time is 45 s and the attained LOQ using contactless conductivity detection is 8 μM.
Collapse
|
21
|
A Low-Cost Palmtop High-Speed Capillary Electrophoresis Bioanalyzer with Laser Induced Fluorescence Detection. Sci Rep 2018; 8:1791. [PMID: 29379053 PMCID: PMC5789010 DOI: 10.1038/s41598-018-20058-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
In this work, we developed a miniaturized palmtop high-speed capillary electrophoresis (CE) system integrating whole modules, including picoliter-scale sample injection, short capillary-based fast CE, high-voltage power supply, orthogonal laser induced fluorescence (LIF) detection, battery, system control, on-line data acquisition, processing, storage, and display modules. A strategy of minimalist miniaturization combining minimal system design and low-cost system construction was adopted to achieve the instrument miniaturization with extremely low cost, which is differing from the current microfabrication strategy used in most reported miniaturized CE systems. With such a strategy, the total size of the bioanalyzer was minimized to 90 × 75 × 77 mm (length × width × height) and the instrument cost was reduced to ca. $500, which demonstrated the smallest and lowest-cost CE instrument with LIF detection in so far reported systems. The present bioanalyzer also exhibited comparable analytical performances to previously-reported high-speed CE systems. A limit of detection of 1.02 nM sodium fluorescein was obtained. Fast separations were achieved for multiple types of samples as amino acids, amino acid enantiomers, DNA fragments, and proteins with high efficiency. We applied this instrument in colorectal cancer diagnosis for detecting KRAS mutation status by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.
Collapse
|
22
|
Wang W, Bai R, Cai X, Lin P, Ma L. Separation and determination of peptide metabolite of Bacillus licheniformis
in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. J Sep Sci 2017; 40:4446-4452. [DOI: 10.1002/jssc.201700656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Lihong Ma
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| |
Collapse
|
23
|
Poinsot V, Ong-Meang V, Ric A, Gavard P, Perquis L, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods: June 2015-May 2017. Electrophoresis 2017; 39:190-208. [PMID: 28805963 DOI: 10.1002/elps.201700270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
In the tenth edition of this article focused on recent advances in amino acid analysis using capillary electrophoresis, we describe the most important research articles published on this topic during the period from June 2015 to May 2017. This article follows the format of the previous articles published in Electrophoresis. The new developments in amino acid analysis with CE mainly describe improvements in CE associated with mass spectrometry. Focusing on applications, we mostly describe clinical works, although metabolomics studies are also very important. Finally, works focusing on amino acids in food and agricultural applications are also described.
Collapse
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | | | - Audrey Ric
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Pierre Gavard
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Lucie Perquis
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| |
Collapse
|
24
|
Fang XX, Fang P, Pan JZ, Fang Q. A compact short-capillary based high-speed capillary electrophoresis bioanalyzer. Electrophoresis 2016; 37:2376-83. [PMID: 27377052 DOI: 10.1002/elps.201600195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
Here, a compact high-speed CE bioanalyzer based on a short capillary has been developed. Multiple modules of picoliter scale sample injection, high-speed CE separation, sample changing, LIF detection, as well as a custom designed tablet computer for data processing, instrument controlling, and result displaying were integrated in the bioanalyzer with a total size of 23 × 17 × 19 cm (length × width × height). The high-speed CE bioanalyzer is capable of performing automated sample injection and separation for multiple samples and has been successfully applied in fast separations of amino acids, chiral amino acids, proteins and DNA fragments. For instance, baseline separation of six FITC-labeled amino acids and ultrahigh-speed separation of three amino acids could be achieved within 7 and 1 s, respectively. The separation speed and efficiency of the optimized high-speed CE system are comparable to or even better than those reported in microchip-based CE systems. We believe this bioanalyzer could provide an advanced platform for fundamental research in bioscience and clinical diagnosis, as well as in quality control for drugs, foods, and feeds.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Chemistry, Innovation Center for Cell Signaling Network, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, P. R. China
| | - Pan Fang
- Department of Chemistry, Innovation Center for Cell Signaling Network, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, P. R. China
| | - Jian-Zhang Pan
- Department of Chemistry, Innovation Center for Cell Signaling Network, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, P. R. China
| | - Qun Fang
- Department of Chemistry, Innovation Center for Cell Signaling Network, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
25
|
Li Q, Zhu Y, Zhang NQ, Fang Q. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis. Sci Rep 2016; 6:26654. [PMID: 27230468 PMCID: PMC4882528 DOI: 10.1038/srep26654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 10(5) N/m) were achieved.
Collapse
Affiliation(s)
- Q Li
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Lishui Center for Disease Control and Prevention, Lishui 323000, China
| | - Y Zhu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - N-Q Zhang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Q Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Wang W, Ma L, Lin P, Xu K. Separation and detection of amino acid metabolites ofEscherichia coliin microbial fuel cell with CE. Electrophoresis 2016; 37:2106-11. [DOI: 10.1002/elps.201600007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Lab of Analysis and Detection for Food Safety, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Lihong Ma
- Ministry of Education Key Lab of Analysis and Detection for Food Safety, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Ping Lin
- Ministry of Education Key Lab of Analysis and Detection for Food Safety, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Kaixuan Xu
- Ministry of Education Key Lab of Analysis and Detection for Food Safety, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, School of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| |
Collapse
|
27
|
Fang XX, Li HY, Fang P, Pan JZ, Fang Q. A handheld laser-induced fluorescence detector for multiple applications. Talanta 2015; 150:135-41. [PMID: 26838391 DOI: 10.1016/j.talanta.2015.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Han-Yang Li
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Pan Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Kartsova LA, Bessonova EA. Biomedical applications of capillary electrophoresis. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Liu L, Tian M, Liu X, Guo L, Yang L. Theoretical and experimental studies on sequential two-diffusional sample injection for capillary electrophoresis. J Chromatogr A 2015; 1381:247-52. [DOI: 10.1016/j.chroma.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022]
|
30
|
Jin DQ, Zhu Y, Fang Q. Swan Probe: A Nanoliter-Scale and High-Throughput Sampling Interface for Coupling Electrospray Ionization Mass Spectrometry with Microfluidic Droplet Array and Multiwell Plate. Anal Chem 2014; 86:10796-803. [DOI: 10.1021/ac503014k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Di-Qiong Jin
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhu
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute
of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key
Laboratory for Biomedical Engineering of Ministry of Education of
China, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Wang W, Ma L, Yao F, Lin X, Xu K. High-speed separation and detection of amino acids in laver using a short capillary electrophoresis system. Electrophoresis 2014; 36:335-40. [DOI: 10.1002/elps.201400246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Wang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education; Fujian Provincial; Key Lab of Analysis and Detection for Food Safety; Department of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Lihong Ma
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education; Fujian Provincial; Key Lab of Analysis and Detection for Food Safety; Department of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Fenzeng Yao
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education; Fujian Provincial; Key Lab of Analysis and Detection for Food Safety; Department of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Xiuli Lin
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education; Fujian Provincial; Key Lab of Analysis and Detection for Food Safety; Department of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| | - Kaixuan Xu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education; Fujian Provincial; Key Lab of Analysis and Detection for Food Safety; Department of Chemistry; Fuzhou University; Fuzhou Fujian P. R. China
| |
Collapse
|
32
|
Guan J, Li H, Yan F, Shi S, Wang S. Optimization and validation of a novel CE method for the enantioseparation of pantoprazole and related benzimididazole using a dual chiral selector system. Electrophoresis 2014; 35:2800-6. [DOI: 10.1002/elps.201400305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Guan
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Huan Li
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Feng Yan
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Shuang Shi
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| | - Shilin Wang
- School of Applied Chemistry; Shenyang University of Chemical Technology; Shenyang P. R. China
| |
Collapse
|
33
|
Mark JJP, Beutner A, Cindric M, Matysik FM. Microanalytical study of sub-nanoliter samples by capillary electrophoresis – mass spectrometry with 100 % injection efficiency. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zhang T, Fu J, Fang Q. Improved high-speed capillary electrophoresis system using a short capillary and picoliter-scale translational spontaneous injection. Electrophoresis 2014; 35:2361-9. [DOI: 10.1002/elps.201400186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Ting Zhang
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou P. R. China
| | - Jinglin Fu
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou P. R. China
| | - Qun Fang
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou P. R. China
| |
Collapse
|
35
|
Řezanka P, Navrátilová K, Řezanka M, Král V, Sýkora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 2014; 35:2701-21. [DOI: 10.1002/elps.201400145] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel Řezanka
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - Klára Navrátilová
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - Michal Řezanka
- Institute for Nanomaterials; Advanced Technologies and Innovation; Technical University of Liberec; Liberec Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| |
Collapse
|
36
|
Zhang Y, Zhang L, Sun J, Liu Y, Ma X, Cui S, Ma L, Xi JJ, Jiang X. Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-based Loop-Mediated Isothermal Amplification. Anal Chem 2014; 86:7057-62. [DOI: 10.1021/ac5014332] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Zhang
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lu Zhang
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yulei Liu
- State Key Laboratory
for Infectious Disease Prevention and Control, National Center for
AIDS/STD Control and Prevention (NCAIDS), Collaborative Innovation
Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention (China-CDC), Beijing 102206, China
| | - Xingjie Ma
- State Key Laboratory
of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Harbin 150001, China
| | - Shangjin Cui
- State Key Laboratory
of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Harbin 150001, China
| | - Liying Ma
- State Key Laboratory
for Infectious Disease Prevention and Control, National Center for
AIDS/STD Control and Prevention (NCAIDS), Collaborative Innovation
Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention (China-CDC), Beijing 102206, China
| | - Jianzhong Jeff Xi
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
37
|
Cheng YQ, Su Y, Fang XX, Pan JZ, Fang Q. A simple fabrication method for tapered capillary tip and its applications in high-speed CE and ESI-MS. Electrophoresis 2014; 35:1484-8. [DOI: 10.1002/elps.201300631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Yong-Qiang Cheng
- Department of Chemistry; Institute of Microanalytical Systems, Zhejiang University; Hangzhou China
- Institute of Oceanographic Instrumentation; Shandong Academy of Sciences; Qingdao China
| | - Yuan Su
- Department of Chemistry; Institute of Microanalytical Systems, Zhejiang University; Hangzhou China
| | - Xiao-Xia Fang
- Department of Chemistry; Institute of Microanalytical Systems, Zhejiang University; Hangzhou China
| | - Jian-Zhang Pan
- Department of Chemistry; Institute of Microanalytical Systems, Zhejiang University; Hangzhou China
| | - Qun Fang
- Department of Chemistry; Institute of Microanalytical Systems, Zhejiang University; Hangzhou China
| |
Collapse
|
38
|
Tsioupi DA, Stefan-Vanstaden RI, Kapnissi-Christodoulou CP. Chiral selectors in CE: recent developments and applications. Electrophoresis 2013; 34:178-204. [PMID: 23161372 DOI: 10.1002/elps.201200239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023]
Abstract
This review article provides an overview of the recent advances in enantioanalysis by use of electrophoretic techniques. Due to the big number of publications in the subject mentioned above, this article is focused on chiral method developments and applications published from 2008 until 2011, and it demonstrates chiral selectors used in CE. Numerous chiral selectors have been used over the years, and these include the cyclic and the linear oligo- and polysaccharides, the branched polysaccharides, the polymeric and monomeric surfactants, the macrocyclic and other antibiotics, and the crown ethers. Different dual-selector systems are also presented in this article, and the results are compared with those obtained by use of a single chiral selector. Finally, several pharmaceutical and biomedical applications based on chiral recognition are summarized.
Collapse
|
39
|
Li Q, Zhang T, Zhu Y, Cheng YQ, Lin QH, Fang Q. Automated high-speed CE system for multiple samples. Electrophoresis 2013. [DOI: 10.1002/elps.201200401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Li
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| | - Ting Zhang
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| | - Ying Zhu
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| | - Yong-Qiang Cheng
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| | - Qing-Hu Lin
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| | - Qun Fang
- Department of Chemistry; Institute of Microanalytical Systems; Zhejiang University; Hangzhou; P. R. China
| |
Collapse
|
40
|
Simultaneous analysis of seven oligopeptides in microbial fuel cell by micro-fluidic chip with reflux injection mode. Talanta 2012; 100:338-43. [DOI: 10.1016/j.talanta.2012.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 01/25/2023]
|
41
|
Draper MC, Niu X, Cho S, James DI, Edel JB. Compartmentalization of Electrophoretically Separated Analytes in a Multiphase Microfluidic Platform. Anal Chem 2012; 84:5801-8. [DOI: 10.1021/ac301141x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mark C. Draper
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington,
London, SW7 2AZ, United Kingdom
| | - Xize Niu
- Engineering and the Environment,
and Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Soongwon Cho
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington,
London, SW7 2AZ, United Kingdom
| | - David I. James
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington,
London, SW7 2AZ, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington,
London, SW7 2AZ, United Kingdom
| |
Collapse
|
42
|
Cheng YQ, Yao B, Zhang HD, Fang J, Fang Q. An automated capillary electrophoresis system for high-speed separation of DNA fragments based on a short capillary. Electrophoresis 2012; 31:3184-91. [PMID: 22216429 DOI: 10.1002/elps.201000362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A high-speed DNA fragment separation system was developed based on a short capillary and a slotted-vial array automated sample introduction system. The injection process of DNA sample in a short capillary was investigated systematically with three injection techniques including constant-field-strength, low-field-strength and translational spontaneous injections. Under the optimized conditions, picoliter-scale sample plugs (corresponding to ca. 20-μm plug length) were obtained, which ensure the high-speed and high-efficiency separation for DNA fragments with a short effective separation length. Other separation conditions including the sieving matrix concentration, separation field strength and effective separation length were also optimized. The present system was applied in the separation of ΦX174-Hae III digest DNA marker. With an effective separation length of 2.5 cm, the separation could be achieved in <100 s with plate heights ranging from 0.21 to 0.74 μm (corresponding to plate numbers from 4.86 × 10(6) to 1.36 × 10(6)/m). The repeatabilities for the migration time of the eleven fragments were between 0.4 and 1.1% RSD (n=8). By using the automated continuous injection method, the separation for four different DNA samples could be achieved within 250 s. The present system was further applied in the fast sizing of real DNA samples of PCR products.
Collapse
Affiliation(s)
- Yong-Qiang Cheng
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | | | | | | | | |
Collapse
|
43
|
Cheng H, Liu J, Yin X, Shen H, Xu Z. Elimination of suction effect in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry using porous monolithic plugs. Analyst 2012; 137:3111-8. [DOI: 10.1039/c2an35050e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Viglio S, Fumagalli M, Ferrari F, Bardoni A, Salvini R, Giuliano S, Iadarola P. Recent novel MEKC applications to analyze free amino acids in different biomatrices: 2009-2010. Electrophoresis 2011; 33:36-47. [DOI: 10.1002/elps.201100336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 11/07/2022]
|
45
|
Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3078-95. [DOI: 10.1016/j.jchromb.2011.03.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 11/20/2022]
|
46
|
Lin QH, Cheng YQ, Dong YN, Zhu Y, Pan JZ, Fang Q. High-speed separation of proteins by sodium dodecyl sulfate-capillary gel electrophoresis with partial translational spontaneous sample injection. Electrophoresis 2011; 32:2898-903. [DOI: 10.1002/elps.201100187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/28/2011] [Accepted: 05/11/2011] [Indexed: 01/27/2023]
|
47
|
Affiliation(s)
- R. K. Gilpin
- Department of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - C. S. Gilpin
- Select-O-Sep, LLC, 111 West Main Street, Freeport, Ohio 43973, United States
| |
Collapse
|
48
|
Lu H, Chen G. Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:488-508. [PMID: 32938063 DOI: 10.1039/c0ay00489h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A comprehensive survey of recent developments and applications of capillary electromigration techniques for enantioseparations from January 2006 to June 2010 is presented. The techniques include capillary electrophoresis, chip capillary electrophoresis and capillary electrochromatography. The separation principles and the chiral recognition mechanisms are discussed. Additionally, on-line preconcentrations in chiral capillary electrophoresis are also reviewed.
Collapse
Affiliation(s)
- Huang Lu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
- Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
- Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
49
|
FENG J, YANG XJ, LI XC, YANG H, CHEN ZG. An Automated Fluid-transport Device for a Microfluidic System. ANAL SCI 2011; 27:1057-60. [DOI: 10.2116/analsci.27.1057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun FENG
- School of Pharmaceutical Sciences, Sun Yat-sen University
| | - Xiu-Juan YANG
- School of Pharmaceutical Sciences, Sun Yat-sen University
| | - Xin-Chun LI
- School of Pharmaceutical Sciences, Sun Yat-sen University
| | - Hui YANG
- School of Pharmaceutical Sciences, Sun Yat-sen University
| | | |
Collapse
|
50
|
Zhu HD, Lü W, Li HH, Ma YH, Hu SQ, Chen HL, Chen XG. A novel cross-H-channel interface for flow injection-capillary electrophoresis to reduce sample requirement and improve sensitivity. Analyst 2011; 136:1322-8. [DOI: 10.1039/c0an00592d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|