1
|
Tanaka S, Adachi K. Label-free colorimetric analysis strategies based on adsorption-responsive surface-enhanced photochromic phenomena of tungsten(VI) oxide nanoparticles for amino acids. ANAL SCI 2024; 40:1695-1708. [PMID: 38836971 DOI: 10.1007/s44211-024-00607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
Herein, we present a colorimetric detection method based on the surface-enhanced photochromic phenomenon of tungsten (VI) oxide (WO3) nanocolloid particles for α-amino acid (AA) molecules, including L-aspartic acid (Asp), L-glutamic acid (Glu), L-histidine (His), L-isoleucine (Ile), L-leucine (Leu), L-lysine (Lys), L-phenylalanine (Phe), and L-valine (Val). The UV-induced photochromic phenomena in the AA/WO3 binary aqueous systems were investigated using UV-Vis absorption spectrometry. The adsorption properties of the AA molecules on the surface of the WO3 nanocolloid particles have been identified using a combination of adsorption isotherm analysis and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A good linear correlation between the concentration of the AAs adsorbed on the surface of the WO3 nanocolloid particles and the initial photochromic coloration rate in the corresponding UV-irradiated WO3 colloidal aqueous solution was obtained with over three orders of magnitude, indicating that the surface-enhanced photochromic phenomenon of the WO3 nanocolloid particle can be used to detect the AA molecules. In addition, based on the results of the UV-Vis absorption, ATR-FTIR, and adsorption isotherm analyses, we have experimentally demonstrated that the AA/WO3 binary aqueous system with inner-sphere adsorbed Ile, Leu, Lys, or Val molecules on the surface of the WO3 nanocolloid particles exhibits a more significant surface-enhanced photochromic phenomenon than the system with outer-sphere adsorbed Asp, Glu, His, or Phe molecules. The strong inner-sphere adsorption of the AA molecules successfully improved the limit of detection. This study provides valuable insights into a "label-free" colorimetric assay system based on the surface-enhanced photochromic phenomenon of the WO3 nanocolloid probe.
Collapse
Affiliation(s)
- Shohei Tanaka
- Department of Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Kenta Adachi
- Department of Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan.
- Opto-Energy Research Center, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
2
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling. Talanta 2016; 159:208-214. [DOI: 10.1016/j.talanta.2016.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/20/2023]
|
4
|
Wang X, Yi L, Guillo C, Roper MG. Micellar electrokinetic chromatography method for measuring amino acid secretions from islets of Langerhans. Electrophoresis 2015; 36:1172-8. [PMID: 25780900 DOI: 10.1002/elps.201400569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023]
Abstract
Islets of Langerhans are responsible for maintaining glucose homeostasis through regulated secretion of hormones and other factors. It is hypothesized that amino acids secreted from islets play a critical role in cell functionality and viability. For example, glutamate and gamma-aminobutyric acid have been proposed to work as paracrine signaling molecules within islets to coordinate the release of hormone secretion; other amino acids, such as glutamine, leucine, alanine, and arginine, have been shown to stimulate or potentiate glucose-stimulated insulin secretion. To characterize the potential roles that these small molecules may play in islet physiology, derivatization of amino acids in high-salt buffers commonly used in islet experiments with naphthalene-2,3-dicarboxaldehyde and MEKC separation conditions were optimized. The optimized conditions used d-norvaline as the internal standard and allowed quantification of 14 amino acids with LODs ranging from 0.2 to 7 nM. The RSDs of the migration times were 0.04-0.54% and the RSDs of the peak areas were 0.2-5.8% for the various amino acids. The effects of glucose and 2,4-dinitrophenol on amino acid secretions from islets were tested and a suppressive effect of glucose on gamma-aminobutyric acid release was observed, likely acting through adenosine triphosphate inactivation of glutamate decarboxylase.
Collapse
Affiliation(s)
- Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Lian Yi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Christelle Guillo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Kler PA, Huhn C. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE–MS. Anal Bioanal Chem 2014; 406:7163-74. [DOI: 10.1007/s00216-014-8152-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/24/2022]
|
6
|
Xu Z, Li A, Wang Y, Chen Z, Hirokawa T. Pressure-assisted electrokinetic injection stacking for verteporfin drug to achieve highly sensitive enantioseparation and detection in artificial urine by capillary electrophoresis. J Chromatogr A 2014; 1355:284-90. [DOI: 10.1016/j.chroma.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/15/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
|
7
|
Zhang W, Guo CG, Fan LY, Cao CX. Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA. Analyst 2013; 138:5039-51. [PMID: 23806973 DOI: 10.1039/c3an00643c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a general mode and theory of moving chelation boundary based isotachophoresis (MCB-based ITP), together with the concept of decisive metal ion (DMI) having the maximum complexation constant (lg Kmax) with the chelator, were developed from a multi-MCB (mMCB) system. The theoretical deductions were: (i) the reaction boundary velocities in the mMCB system at steady state were equal to each other, resulting in a novel MCB-based ITP separation of metal ions; (ii) the boundary directions and velocities in the system were controlled by the fluxes of chelator and DMI, rather than other metal ions; and (iii) a controllable stacking of metal ions could be simultaneously achieved in the developed system. To demonstrate the deductions, a series of experiments were conducted by using model chelator of EDTA and metal ions of Cu(II) and Co(II) due to characteristic colors of blue [Cu-EDTA](2-) and pink [Co-EDTA](2-) complexes. The experiments demonstrated the correctness of theoretical deductions, indicating the validity of the developed model and theory of ITP. These findings provide guidance for the development of MRB-based ITP separation and stacking of metal ions in biological sample matrix and heavy metal ions in environmental samples.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
8
|
Smejkal P, Bottenus D, Breadmore MC, Guijt RM, Ivory CF, Foret F, Macka M. Microfluidic isotachophoresis: A review. Electrophoresis 2013; 34:1493-509. [DOI: 10.1002/elps.201300021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Petr Smejkal
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| | - Danny Bottenus
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | | | - Rosanne M. Guijt
- ACROSS and School of Pharmacy; University of Tasmania; Hobart; Australia
| | - Cornelius F. Ivory
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | - František Foret
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v.v.i., Brno; Czech Republic
| | - Mirek Macka
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| |
Collapse
|
9
|
Recent advances in on-line concentration and separation of amino acids using capillary electrophoresis. Anal Bioanal Chem 2013; 405:7919-30. [DOI: 10.1007/s00216-013-6906-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/23/2013] [Accepted: 03/08/2013] [Indexed: 11/25/2022]
|
10
|
Zhang Z, Zhang F, Liu Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J Chromatogr Sci 2013; 51:666-83. [DOI: 10.1093/chromsci/bmt012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Bahga SS, Santiago JG. Coupling isotachophoresis and capillary electrophoresis: a review and comparison of methods. Analyst 2013; 138:735-54. [DOI: 10.1039/c2an36150g] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Kitagawa F, Kawai T, Sueyoshi K, Otsuka K. Recent progress of on-line sample preconcentration techniques in microchip electrophoresis. ANAL SCI 2012; 28:85-93. [PMID: 22322799 DOI: 10.2116/analsci.28.85] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review highlights recent developments and applications of on-line sample preconcentration techniques to enhance the detection sensitivity in microchip electrophoresis (MCE); references are mainly from 2008 and later. Among various developed techniques, we focus on the sample preconcentration based on the changes in the migration velocity of analytes in two or three discontinuous solutions system, since they can provide the sensitivity enhancement with relatively easy experimental procedures and short analysis times. The characteristic features of the on-line sample preconcentration applied to microchip electrophoresis (MCE) are presented, categorized on the basis of "field strength-" or "chemically" induced changes in the migration velocity. The preconcentration techniques utilizing field strength-induced changes in the velocity include field-amplified sample stacking, isotachophoresis and transient-isotachophoresis, whereas those based on chemically induced changes in the velocity are sweeping, transient-trapping and dynamic pH junction.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036–8561, Japan.
| | | | | | | |
Collapse
|
13
|
Kenyon SM, Weiss NG, Hayes MA. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice. Electrophoresis 2012; 33:1227-35. [PMID: 22589099 DOI: 10.1002/elps.201100622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophoretic exclusion, a novel separations technique that differentiates species in bulk solution using the opposing forces of electrophoretic velocity and hydrodynamic flow, has been adapted to a microscale device. Proof-of-principle experiments indicate that the device was able to exclude small particles (1 μm polystyrene microspheres) and fluorescent dye molecules (rhodamine 123) from the entrance of a channel. Additionally, differentiation of the rhodamine 123 and polystyrene spheres was demonstrated. The current studies focus on the direct observation of the electrophoretic exclusion behavior on a microchip.
Collapse
Affiliation(s)
- Stacy M Kenyon
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
14
|
Review of recent developments of on-line sample stacking techniques and their application in capillary electrophoresis. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractCapillary electrophoresis (CE) has become one of the most useful tools in separation science because of its high separation efficiency, low cost, versatility, ease of sample preparation and automation. However, some limitations of CE, such as poor concentration sensitivity due to its lower sample loading and shorter optical path length, limits its further applications in separation science. In order to solve this problem, various on-line sample preconcentration techniques such as transient isotachophoresis preconcentration, field-enhanced sample stacking, micelle to solvent stacking, micelle collapse, dynamic pH junction, sweeping, solid phase extraction, single drop microextraction and liquid phase microextraction have been combined with CE. Recent developments, applications and some variants together with different combinations of these techniques integrating in CE are reviewed here and our discussions will be confined to the past three years (2008–2011).
Collapse
|
15
|
Xu Z, Nakamura K, Timerbaev AR, Hirokawa T. Another Approach Toward over 100 000-Fold Sensitivity Increase in Capillary Electrophoresis: Electrokinetic Supercharging with Optimized Sample Injection. Anal Chem 2010; 83:398-401. [DOI: 10.1021/ac102661b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhongqi Xu
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kentaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrei R. Timerbaev
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Takeshi Hirokawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
16
|
Wei J, Gu X, Wang Y, Wu Y, Yan C. Two-dimensional separation system by on-line hyphenation of capillary isoelectric focusing with pressurized capillary electrochromatography for peptide and protein mapping. Electrophoresis 2010; 32:230-7. [DOI: 10.1002/elps.201000419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 11/09/2022]
|
17
|
Gebauer P, Malá Z, Boček P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2010; 32:83-9. [DOI: 10.1002/elps.201000304] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 01/06/2023]
|
18
|
Affiliation(s)
- Nicholas W. Frost
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Meng Jing
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
19
|
Abstract
CE has evolved as one of the most efficient separation techniques for a wide range of analytes, from small molecules to large proteins. Modern microdevices facilitate integration of multiple sample-handling steps, from preparation to separation and detection, and often rely on CE for separations. However, CE frequently requires complex geometries for performing sample injections and maintaining zone profiles across long separation lengths in microdevices. Two novel methods for performing electrophoretic separations, gradient elution moving boundary electrophoresis (GEMBE) and gradient elution isotachophoresis (GEITP), have been developed to simplify microcolumn operations. Both techniques use variable hydrodynamic counterflow and continuous sample injection to perform analyses in short, simple microcolumns. These properties result in instruments and microdevices that have minimal ‘real-world’ interfaces and reduced footprints. Additionally, GEITP is a rapid enrichment technique that addresses sensitivity issues in CE and microchips.
Collapse
|