1
|
Přibyl M, Izák P, Slouka Z. A mathematical model of a lateral electrochromatography device for continuous chiral separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
2
|
Wang X, Zhu J, Yang C, Qin F, Zhang B. Segmented Microfluidics-Based Packing Technology for Chromatographic Columns. Anal Chem 2021; 93:8450-8458. [PMID: 34111926 DOI: 10.1021/acs.analchem.1c00545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoflow liquid chromatography-mass spectrometry (NanoLC-MS) has become the method of choice for the analysis of complex biological systems, especially when the available sample amount is limited. The preparation of high-performance capillary columns for nanoLC use is still a technical challenge. Here, we report a segmented microfluidic method for the preparation of packed capillary columns, where liquid segments were used as soft, dynamic, and well-dispersed slurry reservoirs for carrying and delivering micrometer packing particles. Based on this microfluidic packing technology, the column bed was assembled layer-by-layer at a 50 μm resolution, and ultralong capillary columns of 3, 5, and 10 m were fabricated in such a manner. The microfluidically packed columns demonstrated excellent separation efficiencies of 116 000 plates/m. The higher efficiencies obtained at higher slurry concentrations also indicate that a high-quality packed bed can be obtained without sacrificing the packing speed. Kinetic performance limit analysis shows that the microfluidic packed columns have higher peak capacity production efficiency in the high-resolution region, presenting an improved separation impedance of 2800, which is significantly better than columns packed with the conventional slurry packing method. In comparison with a commercial nanoLC column, a 5 m long microfluidic packed column was evaluated for proteomic analysis using a standard HeLa protein digest and presented 261% improvement in peptide identification capability, resulting in significantly enhanced protein identification confidence.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue Zhu
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyuhu Yang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Qin
- Xiamen Medical College, Xiamen 361023, China
| | - Bo Zhang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Haghighi F, Talebpour Z, Sanati-Nezhad A. Clogging sensitivity of flow distributors designed for radially elongated hexagonal pillar array columns: a computational modelling. Sci Rep 2021; 11:4927. [PMID: 33654139 PMCID: PMC7925673 DOI: 10.1038/s41598-021-84178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Flow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.
Collapse
Affiliation(s)
- Farideh Haghighi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Centre for Bioengineering Research and Education (CBRE), Biomedical Engineering Program, University of Calgary, Mechanical Engineering Building, MEB214, 2500 University Dr., N.W., Calgary, AB, T2N 1N4, Canada
| | - Zahra Talebpour
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Centre for Bioengineering Research and Education (CBRE), Biomedical Engineering Program, University of Calgary, Mechanical Engineering Building, MEB214, 2500 University Dr., N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Kecskemeti A, Gaspar A. Particle-based liquid chromatographic separations in microfluidic devices - A review. Anal Chim Acta 2018; 1021:1-19. [DOI: 10.1016/j.aca.2018.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/06/2023]
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Reising AE, Godinho JM, Jorgenson JW, Tallarek U. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns. J Chromatogr A 2017; 1504:71-82. [PMID: 28511930 DOI: 10.1016/j.chroma.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process.
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - James W Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
7
|
Hlushkou D, Knust KN, Crooks RM, Tallarek U. Numerical simulation of electrochemical desalination. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:194001. [PMID: 27089841 DOI: 10.1088/0953-8984/28/19/194001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier-Stokes, Nernst-Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass-charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.
Collapse
Affiliation(s)
- D Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
8
|
Reising AE, Godinho JM, Hormann K, Jorgenson JW, Tallarek U. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency. J Chromatogr A 2016; 1436:118-32. [PMID: 26858113 DOI: 10.1016/j.chroma.2016.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Abstract
Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3μm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75μm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the packing process (pressure protocol, ultrasound, electric fields).
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - Kristof Hormann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - James W Jorgenson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
9
|
Müllner T, Unger KK, Tallarek U. Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors. NEW J CHEM 2016. [DOI: 10.1039/c5nj03346b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Grinias JP, Kennedy RT. Evaluation of 5 µm Superficially Porous Particles for Capillary and Microfluidic LC Columns. ACTA ACUST UNITED AC 2015; 2:502-514. [PMID: 26714261 PMCID: PMC4669065 DOI: 10.3390/chromatography2030502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large-size (4–5 µm) superficially porous particles yield lower plate heights (e.g., the minimal reduced plate height or hmin ≈ 1.5) than fully porous particles of a similar size when packed into large-bore columns. This property allows for better chromatographic performance without the higher pressures required for smaller particles. This study explores the use of such particles in microfluidic LC columns where materials and fitting pressure limits can constrain the size of particle used. The theoretically predicted performance improvements compared to fully porous particles were not demonstrated in capillary columns (with hmin ≈ 2 for both particle types), in agreement with previous studies that examined smaller superficially porous particles. Microfluidic columns were then compared to capillary columns. Capillary columns significantly outperformed microfluidic columns due to imperfections imposed by microfluidic channel asymmetry and world-to-chip connection at the optimal flow rate; however, superficially porous particles packed in microfluidic LC columns had flatter plate height versus flow rate curves indicating potential for better performance at high reduced velocities.
Collapse
Affiliation(s)
- James P. Grinias
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-734-615-4376
| |
Collapse
|
11
|
Heidig T, Zeiser T, Schwieger W, Freund H. Ortsaufgelöste Simulation des externen Stofftransports in komplexen Katalysatorträgergeometrien. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201300156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Gao D, Liu H, Jiang Y, Lin JM. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. LAB ON A CHIP 2013; 13:3309-22. [PMID: 23824006 DOI: 10.1039/c3lc50449b] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Instrument miniaturization is one of the critical issues to improve sensitivity, speed, throughput, and to reduce the cost of analysis. Microfluidics possesses the ability to handle small sample amounts, with minimal concerns related to sample loss and cross-contamination, problems typical for standard fluidic manipulations. Moreover, the native properties of microfluidics provide the potential for high-density, parallel sample processing, and high-throughput analysis. Recently, the coupling of microfluidic devices to mass spectrometry, especially electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), has attracted an increasing interest and produced tremendous achievements. The interfaces between microfluidics and mass spectrometry are one of the primary focused problems. In this review, we summarize the latest achievements since 2008 in the field of the technologies and applications in the combining of microfluidics with ESI-MS and MALDI-MS. The integration of several analytical functions on a microfluidic device such as sample pretreatment and separations before sample introduction into the mass spectrometer is also discussed.
Collapse
Affiliation(s)
- Dan Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
13
|
Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. J Chromatogr A 2013; 1303:28-38. [DOI: 10.1016/j.chroma.2013.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022]
|
14
|
Affiliation(s)
- Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| |
Collapse
|
15
|
Bruns S, Stoeckel D, Smarsly BM, Tallarek U. Influence of particle properties on the wall region in packed capillaries. J Chromatogr A 2012; 1268:53-63. [DOI: 10.1016/j.chroma.2012.10.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
16
|
Khirevich S, Höltzel A, Seidel-Morgenstern A, Tallarek U. Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios. J Chromatogr A 2012; 1262:77-91. [PMID: 23000179 DOI: 10.1016/j.chroma.2012.08.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
At low column-to-particle diameter (or aspect) ratio (d(c)/d(p)) the kinetic column performance is dominated by the transcolumn disorder that arises from the morphological gradient between the more homogeneous, looser packed wall region and the random, dense core. For a systematic analysis of this morphology-dispersion relation we computer-generated a set of confined sphere packings varying three parameters: aspect ratio (d(c)/d(p)=10-30), bed porosity (ɛ=0.40-0.46), and packing homogeneity. Plate height curves were received from simulation of hydrodynamic dispersion in the packings over a wide range of reduced velocities (v=0.5-500). Geometrical measures derived from radial porosity and velocity profiles were insufficient as morphological descriptors of the plate height data. After Voronoi tessellation of the packings, topological information was obtained from the statistical moments of the free Voronoi volume (V(free)) distributions. The radial profile of the standard deviation of the V(free) distributions in the form of an integral measure was identified as a quantitative scalar measure for the transcolumn disorder. The first morphology-dispersion correlation for confined sphere packings deepens our understanding of how the packing microstructure determines the kinetic column performance.
Collapse
Affiliation(s)
- Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
17
|
Daneyko A, Hlushkou D, Khirevich S, Tallarek U. From random sphere packings to regular pillar arrays: Analysis of transverse dispersion. J Chromatogr A 2012; 1257:98-115. [DOI: 10.1016/j.chroma.2012.08.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 11/26/2022]
|
18
|
Kutter JP. Liquid phase chromatography on microchips. J Chromatogr A 2012; 1221:72-82. [DOI: 10.1016/j.chroma.2011.10.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 01/12/2023]
|
19
|
Daneyko A, Khirevich S, Höltzel A, Seidel-Morgenstern A, Tallarek U. From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion. J Chromatogr A 2011; 1218:8231-48. [DOI: 10.1016/j.chroma.2011.09.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022]
|
20
|
Centrifugally-driven sample extraction, preconcentration and purification in microfluidic compact discs. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Khirevich S, Höltzel A, Tallarek U. Transient and asymptotic dispersion in confined sphere packings with cylindrical and non-cylindrical conduit geometries. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:2485-2493. [PMID: 21576163 DOI: 10.1098/rsta.2011.0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We study the time and length scales of hydrodynamic dispersion in confined monodisperse sphere packings as a function of the conduit geometry. By a modified Jodrey-Tory algorithm, we generated packings at a bed porosity (interstitial void fraction) of ε=0.40 in conduits with circular, rectangular, or semicircular cross section of area 100πd(p)(2) (where d(p) is the sphere diameter) and dimensions of about 20d(p) (cylinder diameter) by 6553.6d(p) (length), 25d(p) by 12.5d(p) (rectangle sides) by 8192d(p) or 14.1d(p) (radius of semicircle) by 8192d(p), respectively. The fluid-flow velocity field in the generated packings was calculated by the lattice Boltzmann method for Péclet numbers of up to 500, and convective-diffusive mass transport of 4×10(6) inert tracers was modelled with a random-walk particle-tracking technique. We present lateral porosity and velocity distributions for all packings and monitor the time evolution of longitudinal dispersion up to the asymptotic (long-time) limit. The characteristic length scales for asymptotic behaviour are explained from the symmetry of each conduit's velocity field. Finally, we quantify the influence of the confinement and of a specific conduit geometry on the velocity dependence of the asymptotic dispersion coefficients.
Collapse
Affiliation(s)
- Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | |
Collapse
|
22
|
Hlushkou D, Bruns S, Seidel-Morgenstern A, Tallarek U. Morphology-transport relationships for silica monoliths: From physical reconstruction to pore-scale simulations. J Sep Sci 2011; 34:2026-37. [DOI: 10.1002/jssc.201100158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/10/2022]
|
23
|
GUAN Y, WU D, DUAN C. Advances in miniaturization of chromatograph and detectors. Se Pu 2011; 29:193-8. [DOI: 10.3724/sp.j.1123.2011.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Daneyko A, Höltzel A, Khirevich S, Tallarek U. Influence of the Particle Size Distribution on Hydraulic Permeability and Eddy Dispersion in Bulk Packings. Anal Chem 2011; 83:3903-10. [DOI: 10.1021/ac200424p] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anton Daneyko
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
25
|
Bruns S, Tallarek U. Physical reconstruction of packed beds and their morphological analysis: Core–shell packings as an example. J Chromatogr A 2011; 1218:1849-60. [DOI: 10.1016/j.chroma.2011.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/28/2011] [Accepted: 02/05/2011] [Indexed: 11/30/2022]
|
26
|
Deridder S, Desmet G. Effective medium theory expressions for the effective diffusion in chromatographic beds filled with porous, non-porous and porous-shell particles and cylinders. Part II: Numerical verification and quantitative effect of solid core on expected B-term band broadening. J Chromatogr A 2011; 1218:46-56. [DOI: 10.1016/j.chroma.2010.10.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/05/2010] [Accepted: 10/25/2010] [Indexed: 11/17/2022]
|
27
|
Trusch M, Ehlert S, Bertsch A, Kohlbacher O, Hildebrand D, Schlüter H, Tallarek U. Improved particle-packed HPLC/MS microchips for proteomic analysis. J Sep Sci 2010; 33:3283-91. [DOI: 10.1002/jssc.201000474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Hlushkou D, Bruns S, Höltzel A, Tallarek U. From Pore Scale to Column Scale Dispersion in Capillary Silica Monoliths. Anal Chem 2010; 82:7150-9. [DOI: 10.1021/ac101393b] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Stefan Bruns
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
29
|
Khirevich S, Daneyko A, Höltzel A, Seidel-Morgenstern A, Tallarek U. Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion. J Chromatogr A 2010; 1217:4713-22. [DOI: 10.1016/j.chroma.2010.05.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/03/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
30
|
Khirevich S, Höltzel A, Seidel-Morgenstern A, Tallarek U. Time and length scales of eddy dispersion in chromatographic beds. Anal Chem 2010; 81:7057-66. [PMID: 20337386 DOI: 10.1021/ac901187d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time and length scales as well as the magnitude of individual contributions to eddy dispersion in chromatographic beds are resolved. We address this issue by a high-resolution numerical analysis of flow and mass transport in computer-generated bulk (unconfined) packings of monosized, nonporous, incompressible, spherical particles and complementary confined cylindrical packings with a cylinder-to-particle diameter ratio of d(c)/d(p) = 20. The transient behavior of longitudinal and transverse dispersion is analyzed and correlated with the spatial scales of heterogeneity in the bulk and confined packings. Simulations were carried out until complete transcolumn equilibration in the confined packings was achieved to facilitate a quantitative study of the geometrical wall effect. Longitudinal plate height data calculated over a wide range of reduced velocities (0.1 < or = nu < or = 500) were fitted to the comprehensive Giddings equation. The determined transition velocities for individual contributions to eddy dispersion were found to be widely disparate. As a consequence, the total effect of eddy dispersion on the plate height curves can be approximated in the practical range of chromatographic operational velocities (5 < or = nu < or = 20) by a composite expression in which only the short-range interchannel contribution retains its coupling characteristics, while transchannel and transcolumn contributions appear as simple mass transfer velocity-proportional terms.
Collapse
Affiliation(s)
- Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
31
|
Hlushkou D, Bruns S, Tallarek U. High-performance computing of flow and transport in physically reconstructed silica monoliths. J Chromatogr A 2010; 1217:3674-82. [DOI: 10.1016/j.chroma.2010.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 11/29/2022]
|
32
|
Beveridge AC, Jett JH, Keller RA, Pratt LR, Yoshida TM. Reduction of diffusion broadening in flow by analysis of time-gated single-molecule data. Analyst 2010; 135:1333-8. [PMID: 20498883 DOI: 10.1039/b926956h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the application of Extreme Value Statistics to the analysis of discrete species that possess distinguishable properties (fluorescence wavelength, fluorescence intensity, light scattering, etc.) as they cross a well-defined observation/probe region. Time-gated selection and extreme value data analysis result in increased resolution in analytical determinations. When only the data corresponding to the smallest crossing times are selected for analysis, the width of the diffusion band decreases for the measured parameter. The molecules with the smallest crossing times diffuse preferentially along the flow direction. A Monte Carlo technique and the probability density function (pdf) for a freely diffusing species are used to generate data streams to provide a theoretical basis for the aforementioned phenomenon. These calculations are included to characterize the effect of the average flow rate and the diffusion constant. We have also included a procedure for extracting the normal diffusion constant (D) from the Extreme Value Distribution. In contrast to standard flow analysis, which requires long path lengths, our approach is particularly suited for measurements in picolitre and nanolitre volumes and provides another dimension to single-molecule measurements in cellular size volumes. We believe that this is a general phenomenon that depends upon the details of the pdf, which can be complex.
Collapse
Affiliation(s)
- Andrew C Beveridge
- International, Space, and Response Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
33
|
Ehlert S, Trojer L, Vollmer M, van de Goor T, Tallarek U. Performance of HPLC/MS microchips in isocratic and gradient elution modes. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:313-320. [PMID: 20209581 DOI: 10.1002/jms.1719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We analyzed the chromatographic performance of particle-packed, all-polyimide high-performance liquid chromatography/mass spectrometry (HPLC/MS) microchips in terms of their hydraulic permeabilities and separation efficiency under isocratic and gradient elution conditions. The separation channels of the chips (with ca 50 microm x 75 microm trapezoidal cross-section and a length of 43 mm) were slurry packed with either 3.5 or 5 microm spherical porous C18-silica particles. A custom-built holder enveloped the chip during packing to prevent channel deformation and delamination from high pressures. It is shown that the packing conditions significantly impact the packing density of the HPLC/MS chips, which determines their performance in both, isocratic and gradient elution modes. Even with steep solvent gradients, peak shape and chromatographic resolution for the densely packed HPLC/MS chips are much improved. Our data show that the analytical power of the HPLC/MS chip is limited by the quality of the chromatographic separation.
Collapse
Affiliation(s)
- Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Jung S, Höltzel A, Ehlert S, Mora JA, Kraiczek K, Dittmann M, Rozing GP, Tallarek U. Impact of Conduit Geometry on the Performance of Typical Particulate Microchip Packings. Anal Chem 2009; 81:10193-200. [DOI: 10.1021/ac902069x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Jose-Angel Mora
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Karsten Kraiczek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Monika Dittmann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Gerard P. Rozing
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| |
Collapse
|