1
|
Su Y, Wang B, Zhang Y, Ruan Z, Bai H, Wan J, Xu C, Li G, Wang S, Ai H, Xiong L, Geng H. Mass spectrometric determination of disulfide bonds and free cysteine in grass carp IgM isoforms. FISH & SHELLFISH IMMUNOLOGY 2019; 95:287-296. [PMID: 31669895 DOI: 10.1016/j.fsi.2019.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Disulfide bonds are fundamental in establishing Ig structure and maintaining Ig biological function. Here, we analysed disulfide bonds and free cysteine in three grass carp IgM isoforms (monomeric, dimeric/trimeric, and tetrameric IgM) by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The results revealed that Cys574 residue status at the C-terminal tail differed substantially in monomeric IgM in comparison with polymeric IgM, Cys574 was found as free thiol in monomeric IgM, while it formed disulfide linkages in dimeric/trimeric and tetrameric IgM. Five intra-chain disulfide bonds in the CH1~CH4 and CL1 domains, as well as one H-H and one H-L inter-chain disulfide linkages, were also observed and shown identical connectivity in monomeric, dimeric/trimeric, and tetrameric IgM. These findings represent the first experimental assignments of disulfide linkages of grass carp IgM and reveal that grass carp IgM isoform formation is due to alternative disulfide bonds connecting the Cys574 residue at the C-terminal tail.
Collapse
Affiliation(s)
- Yiling Su
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Bing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ying Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zilun Ruan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hao Bai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shengqiang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2017; 410:2467-2484. [PMID: 29256076 DOI: 10.1007/s00216-017-0772-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.
Collapse
Affiliation(s)
- Jude C Lakbub
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Joshua T Shipman
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA.
| |
Collapse
|
3
|
Disulfide bond characterization of human factor Xa by mass spectrometry through protein-level partial reduction. J Pharm Biomed Anal 2016; 132:238-246. [PMID: 27771573 DOI: 10.1016/j.jpba.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/15/2023]
Abstract
Protein-level partial reduction was investigated as a novel sample preparation technique to characterize proteins with cystine knots or complex disulfide linkages. Human Factor Xa containing twelve disulfide bonds was selected as a model protein to demonstrate this methodology. Five in twelve disulfide linkages were characterized through conventional non-reduced samples while the other seven disulfide linkages containing cystine knots were successfully characterized though partially reduced samples. Each disulfide linkage was confirmed through product ions generated by an UPLC-ESI QTOF MS system equipped with data independent collision-induced dissociation (CID) acquisition. Free cysteines in the sample were also determined in this study.
Collapse
|
4
|
Kita A, Ponniah G, Nowak C, Liu H. Characterization of Cysteinylation and Trisulfide Bonds in a Recombinant Monoclonal Antibody. Anal Chem 2016; 88:5430-7. [DOI: 10.1021/acs.analchem.6b00822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Adriana Kita
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Gomathinayagam Ponniah
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| |
Collapse
|
5
|
Liu H, Lei QP, Washabaugh M. Characterization of IgG2 Disulfide Bonds with LC/MS/MS and Postcolumn Online Reduction. Anal Chem 2016; 88:5080-7. [DOI: 10.1021/acs.analchem.5b04368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongji Liu
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Qing Paula Lei
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael Washabaugh
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
6
|
Wiesner J, Resemann A, Evans C, Suckau D, Jabs W. Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 2015; 12:115-23. [DOI: 10.1586/14789450.2015.1018896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Determination of disulfide linkages in antimicrobial peptides of the macin family by combination of top-down and bottom-up proteomics. J Proteomics 2014; 103:216-26. [PMID: 24747305 DOI: 10.1016/j.jprot.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022]
Abstract
UNLABELLED Macins are a distinct class of antimicrobial peptides (AMPs) produced by leeches and Hydra. Their function depends strongly on their three-dimensional structure. In order to support structural elucidation of these AMPs, the knowledge and proper assignment of disulfide bonds formed in these cysteine-rich peptides is a prerequisite. In this report, we outline an analytical strategy, encompassing a combination of top-down MS based analytics and sequence-dependent enzyme cleavage under native conditions followed by high mass accuracy and high resolution MS/MS analysis by LTQ-Orbitrap MS to assign disulfide linkages of three members of the macin family, namely neuromacin, theromacin, and hydramacin-1. The results revealed that the eight cysteine residues conserved in all three macins form the same four disulfide bonds, i.e. [C1:C6], [C2:C5], [C3:C7], and [C4:C8]. Theromacin, which possess two additional cysteine residues, forms a fifth disulfide bond. BIOLOGICAL SIGNIFICANCE Beside the high biological significance which is based on the inherent dependence of biological activity on the structural features of antimicrobial peptides (which holds true for entirely every protein), the presented analytical strategy will be of wide interest, as it widens the available toolbox for the analysis of this important posttranslational modification.
Collapse
|
8
|
Disulfide bond assignment of an IgG1 monoclonal antibody by LC–MS with post-column partial reduction. Anal Biochem 2013; 436:93-100. [DOI: 10.1016/j.ab.2013.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/17/2013] [Indexed: 11/23/2022]
|
9
|
Moulaei T, Stuchlik O, Reed M, Yuan W, Pohl J, Lu W, Haugh-Krumpe L, O'Keefe BR, Wlodawer A. Topology of the disulfide bonds in the antiviral lectin scytovirin. Protein Sci 2011; 19:1649-61. [PMID: 20572021 DOI: 10.1002/pro.445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antiviral lectin scytovirin (SVN) contains a total of five disulfide bonds in two structurally similar domains. Previous reports provided contradictory results on the disulfide pairing in each individual domain, and we have now re-examined the disulfide topology. N-terminal sequencing and mass spectrometry were used to analyze proteolytic fragments of native SVN obtained at acidic pH, yielding the assignment as Cys7-Cys55, Cys20-Cys32, Cys26-Cys38, Cys68-Cys80, and Cys74-Cys86. We also analyzed the N-terminal domain of SVN (SD1, residues 1-48) prepared by expression/oxidative folding of the recombinant protein and by chemical synthesis. The disulfide pairing in the chemically synthesized SD1 was forced into predetermined topologies: SD1A (Cys20-Cys26, Cys32-Cys38) or SD1B (Cys20-Cys32, Cys26-Cys38). The topology of native SVN was found to be in agreement with the SD1B and the one determined for the recombinant SD1 domain. Although the two synthetic forms of SD1 were distinct when subjected to chromatography, their antiviral properties were indistinguishable, having low nM activity against HIV. Tryptic fragments, the "cystine clusters" [Cys20-Cys32/Cys26-Cys38; SD1] and [Cys68-Cys80/Cys74-C-86; SD2], were found to undergo rapid disulfide interchange at pH 8. This interchange resulted in accumulation of artifactual fragments in alkaline pH digests that are structurally unrelated to the original topology, providing a rational explanation for the differences between the topology reported herein and the one reported earlier (Bokesh et al., Biochemistry 2003;42:2578-2584). Our observations emphasize the fact that proteins such as SVN, with disulfide bonds in close proximity, require considerable precautions when being fragmented for the purpose of disulfide assignment.
Collapse
Affiliation(s)
- Tinoush Moulaei
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu SL, Jiang H, Hancock WS, Karger BL. Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with electron transfer dissociation/collision induced dissociation. Anal Chem 2010; 82:5296-303. [PMID: 20481521 DOI: 10.1021/ac100766r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombinant tissue plasminogen (rt-PA) with 35 cysteine residues has been completely assigned by mapping the 17 disulfide linkages and the unpaired cysteine. The result is consistent with the prediction from homology except for the unassigned cysteine, which was identified at Cys83. This cysteine was found to be blocked and paired with either a glutathione or cysteine residue in an approximately 60:40 ratio, respectively. The analysis was conducted using a multifragmentation approach consisting of electron transfer dissociation (ETD) and collision induced dissociation (CID), in combination with a multienzyme digestion strategy (Lys-C, trypsin, and Glu-C). The disulfide-linked peptides, even those containing N- or O-linked glycosylation, could be assigned since the disulfide bonds were still preferably cleaved over the glycosidic cleavages under ETD fragmentation. The use of a multiple and sequential enzymatic digestion strategy was important in producing fragment sizes suitable for analysis. For the analysis of complex intertwined disulfides, the use of CID-MS(3) to target partially disulfide-dissociated peptides from the ETD fragmentation was necessary for linkage assignment. The ability to identify the exact location and status of the unpaired cysteine (free or blocked with a glutathione or cysteine) could shed light on the activation of rt-PA, upon stimulation by either oxidative or ischemic stress.
Collapse
Affiliation(s)
- Shiaw-Lin Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
11
|
Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:959-968. [PMID: 20438753 DOI: 10.1016/j.dci.2010.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 05/29/2023]
Abstract
As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins.
Collapse
Affiliation(s)
- Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
12
|
Zhang B, Harder AG, Connelly HM, Maheu LL, Cockrill SL. Determination of Fab-hinge disulfide connectivity in structural isoforms of a recombinant human immunoglobulin G2 antibody. Anal Chem 2010; 82:1090-9. [PMID: 20039682 DOI: 10.1021/ac902466z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection and characterization of unexpected disulfide-mediated structural variants of human immunoglobulin G2 (IgG2) antibodies was recently the subject of two copublications. In this paper, we present data to confirm the previously reported structures and elucidate the complete disulfide connectivity of each variant through the application of a novel analytical methodology. In this manner, the data illustrate the presence of at least five structural variants, including the classical structure with independent Fab domains and a hinge region. Multiple subvariants of the IgG2-A/B and IgG2-B structures are identified; these subvariants of each structure differ through the order of attachment of Fab peptides to the sequential hinge cysteines. Furthermore, the connectivity of a novel subvariant of IgG2-B containing an intrachain disulfide linkage in the lower hinge region is elucidated. The results presented in this paper reveal that the population of IgG2 disulfide structural variants is yet more complex than recently reported.
Collapse
Affiliation(s)
- Bing Zhang
- Analytical Sciences, Amgen, Inc., 4000 Nelson Road, Longmont, Colorado 80503, USA
| | | | | | | | | |
Collapse
|