1
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Rahman M, Marzullo B, Holman SW, Barrow M, Ray AD, O’Connor PB. Advancing PROTAC Characterization: Structural Insights through Adducts and Multimodal Tandem-MS Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:285-299. [PMID: 38197777 PMCID: PMC10853971 DOI: 10.1021/jasms.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are specialized molecules that bind to a target protein and a ubiquitin ligase to facilitate protein degradation. Despite their significance, native PROTACs have not undergone tandem mass spectrometry (MS) analysis. To address this gap, we conducted a pioneering investigation on the fragmentation patterns of two PROTACs in development, dBET1 and VZ185. Employing diverse cations (sodium, lithium, and silver) and multiple tandem-MS techniques, we enhanced their structural characterization. Notably, lithium cations facilitated comprehensive positive-mode coverage for dBET1, while negative polarity mode offered richer insights. Employing de novo structure determination on 2DMS data from degradation studies yielded crucial insights. In the case of VZ185, various charge states were observed, with [M + 2H]2+ revealing fewer moieties than [M + H]+ due to charge-related factors. Augmenting structural details through silver adducts suggested both charge-directed and charge-remote fragmentation. This comprehensive investigation identifies frequently dissociated bonds across multiple fragmentation techniques, pinpointing optimal approaches for elucidating PROTAC structures. The findings contribute to advancing our understanding of PROTACs, pivotal for their continued development as promising therapeutic agents.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Bryan Marzullo
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Stephen W. Holman
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Mark Barrow
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Andrew D. Ray
- New
Modalities and Parenteral Development, Pharmaceutical Technology &
Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| |
Collapse
|
3
|
Theisen A, Wootton CA, Haris A, Morgan TE, Lam YPY, Barrow MP, O’Connor PB. Enhancing Biomolecule Analysis and 2DMS Experiments by Implementation of (Activated Ion) 193 nm UVPD on a FT-ICR Mass Spectrometer. Anal Chem 2022; 94:15631-15638. [DOI: 10.1021/acs.analchem.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alina Theisen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Anisha Haris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Tomos E. Morgan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Yuko P. Y. Lam
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
4
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiation of leucine and isoleucine residues in peptides using charge transfer dissociation mass spectrometry (CTD-MS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9246. [PMID: 34927767 DOI: 10.1002/rcm.9246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE The function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations. METHODS Four model peptides and two wild-type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three-dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision-induced dissociation spectra of the same peptides obtained using the same instrument. RESULTS CTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side-chain cleavages, including d, w and v ions. Using CTD, reliable d and w ions of Xle residues were observed more than 80% of the time. When present, d ions are typically greater than 10% of the abundance of the corresponding a ions from which they derive, and w ions are typically more abundant than the z ions from which they derive. CONCLUSIONS CTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high-energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst 2022; 147:1159-1168. [PMID: 35188507 DOI: 10.1039/d1an02279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. .,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
6
|
Liu FC, Ridgeway ME, Winfred JSRV, Polfer NC, Lee J, Theisen A, Wootton CA, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9192. [PMID: 34498312 PMCID: PMC9195479 DOI: 10.1002/rcm.9192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/05/2023]
Abstract
RATIONALE Tandem-ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem-ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. METHODS Here, we describe the coupling of the separation capabilities of tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. RESULTS We establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2-3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical-based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here ("UVnoD2"), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility-separating fragment ions produced from UVPD. CONCLUSIONS The data demonstrate that UVPD carried out at elevated pressures of 2-3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post-UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4389, USA
| | - Mark E. Ridgeway
- Bruker Daltonics, Inc., 40 Manning Rd., Billerica, MA 01821, USA
| | | | - Nicolas C. Polfer
- Athénée de Luxembourg, 24 boulevard Pierre Dupont, L-1430 Luxembourg, Grand-Duchy of Luxembourg
| | - Jusung Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4389, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., 40 Manning Rd., Billerica, MA 01821, USA
- Correspondence to: ,
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4389, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4389, USA
- Correspondence to: ,
| |
Collapse
|
7
|
Mukherjee S, Fang M, Kok WM, Kapp EA, Thombare VJ, Huguet R, Hutton CA, Reid GE, Roberts BR. Establishing Signature Fragments for Identification and Sequencing of Dityrosine Cross-Linked Peptides Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:12129-12133. [DOI: 10.1021/acs.analchem.9b02986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mengxuan Fang
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - W. Mei Kok
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Eugene A. Kapp
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Gavin E. Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Isomerization versus dissociation of phenylalanylglycyltryptophan radical cations. Phys Chem Chem Phys 2017. [PMID: 28631796 DOI: 10.1039/c7cp02355c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four isomers of the radical cation of tripeptide phenylalanylglycyltryptophan, in which the initial location of the radical center is well defined, have been isolated and their collision-induced dissociation (CID) spectra examined. These ions, the π-centered [FGWπ˙]+, α-carbon- [FGα˙W]+, N-centered [FGWN˙]+ and ζ-carbon- [Fζ˙GW]+ radical cations, were generated via collision-induced dissociation (CID) of transition metal-ligand-peptide complexes, side chain fragmentation of a π-centered radical cation, homolytic cleavage of a labile nitrogen-nitrogen single bond, and laser induced dissociation of an iodinated peptide, respectively. The π-centered and tryptophan N-centered peptide radical cations produced almost identical CID spectra, despite the different locations of their initial radical sites, which indicated that interconversion between the π-centered and tryptophan N-centered radical cations is facile. By contrast, the α-carbon-glycyl radical [FGα˙W]+, and ζ-phenyl radical [Fζ˙GW]+, featured different dissociation product ions, suggesting that the interconversions among α-carbon, π-centered (or tryptophan N-centered) and ζ-carbon-radical cations have higher barriers than those to dissociation. Density functional theory calculations have been used to perform systematic mechanistic investigations on the interconversions between these isomers and to study selected fragmentation pathways for these isomeric peptide radical cations. The results showed that the energy barrier for interconversion between [FGWπ˙]+ and [FGWN˙]+ is only 31.1 kcal mol-1, much lower than the barriers to their dissociation (40.3 kcal mol-1). For the [FGWπ˙]+, [FGα˙W]+, and [Fζ˙GW]+, the barriers to interconversion are higher than those to dissociation, suggesting that interconversions among these isomers are not competitive with dissociations. The [z3 - H]˙+ ions isolated from [FGα˙W]+ and [Fζ˙GW]+ show distinctly different fragmentation patterns, indicating that the structures of these ions are different and this result is supported by the DFT calculations.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
9
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
10
|
DeGraan-Weber N, Zhang J, Reilly JP. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2041-2053. [PMID: 27613306 PMCID: PMC5748252 DOI: 10.1007/s13361-016-1487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 05/21/2023]
Abstract
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nick DeGraan-Weber
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Jun Zhang
- Pre-Pivotal Drug Product Technologies, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Halim MA, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. Combined Infrared Multiphoton Dissociation with Ultraviolet Photodissociation for Ubiquitin Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1435-42. [PMID: 27287047 PMCID: PMC5031736 DOI: 10.1007/s13361-016-1419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 05/10/2023]
Abstract
Herein we report the successful implementation of the consecutive and simultaneous photodissociation with high (213 nm) and low (10.6 μm) energy photons (HiLoPD, high-low photodissociation) on ubiquitin in a quadrupole-Orbitrap mass spectrometer. Absorption of high-energy UV photon is dispersed over the whole protein and stimulates extensive C-Cα backbone fragmentation, whereas low-energy IR photon gradually increases the internal energy and thus preferentially dissociates the most labile amide (C-N) bonds. We noticed that simultaneous irradiation of UV and IR lasers on intact ubiquitin in a single MS/MS experiment provides a rich and well-balanced fragmentation array of a/x, b/y, and z ions. Moreover, secondary fragmentation from a/x and z ions leads to the formation of satellite side-chain ions (d, v, and w) and can help to distinguish isomeric residues in a protein. Implementation of high-low photodissociation in a high-resolution mass spectrometer may offer considerable benefits to promote a comprehensive portrait of protein characterization. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mohammad A Halim
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Marion Girod
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69100, Villeurbanne, France
| | - Luke MacAleese
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Jérôme Lemoine
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69100, Villeurbanne, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Philippe Dugourd
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
12
|
DeGraan-Weber N, Ashley DC, Keijzer K, Baik MH, Reilly JP. Factors Affecting the Production of Aromatic Immonium Ions in MALDI 157 nm Photodissociation Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:834-846. [PMID: 26926443 DOI: 10.1007/s13361-015-1329-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Immonium ions are commonly observed in the high energy fragmentation of peptide ions. In a MALDI-TOF/TOF mass spectrometer, singly charged peptides photofragmented with 157 nm VUV light yield a copious abundance of immonium ions, especially those from aromatic residues. However, their intensities may vary from one peptide to another. In this work, the effect of varying amino acid position, peptide length, and peptide composition on immonium ion yield is investigated. Internal immonium ions are found to have the strongest intensity, whereas immonium ions arising from C-terminal residues are the weakest. Peptide length and competition among residues also strongly influence the immonium ion production. Quantum calculations provide insights about immonium ion structures and the fragment ion conformations that promote or inhibit immonium ion formation.
Collapse
Affiliation(s)
- Nick DeGraan-Weber
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Daniel C Ashley
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Karlijn Keijzer
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 339-701, South Korea.
- Institute for Basic Science (IBS), Center for Catalytic Hydrocarbon Functionalizations, Daejeon, 339-701, South Korea.
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Aponte JR, Vasicek L, Swaminathan J, Xu H, Koag MC, Lee S, Brodbelt JS. Streamlining bottom-up protein identification based on selective ultraviolet photodissociation (UVPD) of chromophore-tagged histidine- and tyrosine-containing peptides. Anal Chem 2014; 86:6237-44. [PMID: 24897623 DOI: 10.1021/ac403654m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a fast and highly efficient diazonium reaction that couples a nitroazobenzene chromophore to tyrosine and histidine residues, thus endowing peptides with high photoabsorption cross sections at 351 nm in the gas phase. Only the tagged peptides undergo ultraviolet photodissociation (UVPD) at 351 nm, as demonstrated for several Tyr- and His-containing peptides from protein digests. Additional selectivity is achieved by the integration of the UVPD-MS method with an in silico database search restricted to Tyr- and His-containing peptides. A modified MassMatrix algorithm condenses analysis by filtering the input database file to include Tyr/His-containing peptides only, thus reducing the search space and increasing confidence. In summary, derivatization of specific amino acid residues in conjunction with selective activation of the derivatized peptides provides a streamlined approach to shotgun proteomics.
Collapse
Affiliation(s)
- Julia R Aponte
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
15
|
A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry. Anal Chim Acta 2014; 808:44-55. [DOI: 10.1016/j.aca.2013.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
|
16
|
Robotham SA, Kluwe C, Cannon JR, Ellington A, Brodbelt JS. De novo sequencing of peptides using selective 351 nm ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:9832-8. [PMID: 24050806 DOI: 10.1021/ac402309h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although in silico database search methods remain more popular for shotgun proteomics methods, de novo sequencing offers the ability to identify peptides derived from proteins lacking sequenced genomes and ones with subtle splice variants or truncations. Ultraviolet photodissociation (UVPD) of peptides derivatized by selective attachment of a chromophore at the N-terminus generates a characteristic series of y ions. The UVPD spectra of the chromophore-labeled peptides are simplified and thus amenable to de novo sequencing. This method resulted in an observed sequence coverage of 79% for cytochrome C (eight peptides), 47% for β-lactoglobulin (five peptides), 25% for carbonic anhydrase (six peptides), and 51% for bovine serum albumin (33 peptides). This strategy also allowed differentiation of proteins with high sequence homology as evidenced by de novo sequencing of two variants of green fluorescent protein.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
17
|
Dodds ED. Gas-phase dissociation of glycosylated peptide ions. MASS SPECTROMETRY REVIEWS 2012; 31:666-82. [PMID: 22407588 DOI: 10.1002/mas.21344] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 05/15/2023]
Abstract
Among the myriad of protein post-translational modifications (PTMs), glycosylation presents a singular analytical challenge. On account of the extraordinary diversity of protein-linked carbohydrates and the great complexity with which they decorate glycoproteins, the rigorous establishment of glycan-protein connectivity is often an arduous experimental venture. Consequently, elaborating the interplay between structures of oligosaccharides and functions of proteins they modify is usually not a straightforward task. A more mature biochemical appreciation of carbohydrates as PTMs will significantly hinge upon analytical advances in the field of glycoproteomics. Undoubtedly, the analysis of glycosylated peptides by tandem mass spectrometry (MS/MS) will play a pivotal role in this regard. The goal of this review is to summarize, from an analytical and tutorial perspective, the present state of knowledge regarding the dissociation of glycopeptide ions as accomplished by various MS/MS methods. In addition, this review will endeavor to harmonize some seemingly disparate findings to provide a more complete and broadly applicable description of glycopeptide ion fragmentation. A fuller understanding of the rich variety of glycopeptide dissociation behaviors will allow glycoproteomic researchers to maximize the information yielded by MS/MS experiments, while also paving the way to new innovations in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, 711 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA.
| |
Collapse
|
18
|
Hurtado PP, O'Connor PB. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry. MASS SPECTROMETRY REVIEWS 2012; 31:609-25. [PMID: 22322410 DOI: 10.1002/mas.20357] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Characterization and differentiation of isomers in biological macromolecules using mass spectrometry is one of the most significant challenges facing scientists in the field. The capability of high-resolution MS instruments along with the development of new fragmentation methods now provides the ability to indirectly differentiate between some isomers. This ability has enabled mass spectrometry to evolve into a multidisciplinary technique incorporating areas such as pharmaceutical research, proteomics, polymer science, medicine, environmental chemistry, and recently archeology. This article aims to review recent developments in mass spectrometry methodologies in the identification of structural and spatial isomers in biological macromolecules, such as aspartic acid and isoaspartic acid (Asp/IsoAsp), leucine and isoleucine (Leu/Ile), glutamic acid and γ-glutamic acid, and D/L enantiomers.
Collapse
|
19
|
He Y, Parthasarathi R, Raghavachari K, Reilly JP. Photodissociation of charge tagged peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1182-1190. [PMID: 22532332 DOI: 10.1007/s13361-012-0379-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/29/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
Tris(2,4,6-trimethoxyphenyl) phosphonium acetyl (TMPP-Ac) was previously introduced to improve the mass spectrometric sequence analysis of peptides by fixing a permanent charge at the N-termini. However, peptides containing arginine residues did not fragment efficiently after TMPP-Ac modification. In this work, we combine charge derivatization with photodissociation. The fragmentation of TMPP-derivatized peptides is greatly improved and a series of N-terminal fragments is generated with complete sequence information. Arginine has a special effect on the fragmentation of the TMPP tagged peptides when it is the N-terminal peptide residue. Theoretical and experimental results suggest that this is due to hydrogen transfer from the charged N-terminus to the hydrogen-deficient peptide sequence.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
20
|
Liu X, Li YF, Bohrer BC, Arnold RJ, Radivojac P, Tang H, Reilly JP. Investigation of VUV Photodissociation Propensities Using Peptide Libraries. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 308:142-154. [PMID: 22125417 PMCID: PMC3224043 DOI: 10.1016/j.ijms.2011.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PSD does not usually generate a complete series of y-type ions, particularly at high mass, and this is a limitation for de novo sequencing algorithms. It is demonstrated that b(2) and b(3) ions can be used to help assign high mass x(N-2) and x(N-3) fragments that are found in vacuum ultraviolet (VUV) photofragmentation experiments. In addition, v(N)-type ion fragments with side chain loss from the N-terminal residue often enable confirmation of N-terminal amino acids. Libraries containing several thousand peptides were examined using photodissociation in a MALDI-TOF/TOF instrument. 1345 photodissociation spectra with a high S/N ratio were interpreted.
Collapse
|
21
|
Vasicek LA, Ledvina AR, Shaw J, Griep-Raming J, Westphall MS, Coon JJ, Brodbelt JS. Implementing photodissociation in an Orbitrap mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1105-8. [PMID: 21953052 PMCID: PMC3202985 DOI: 10.1007/s13361-011-0119-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 05/25/2023]
Abstract
We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD.
Collapse
Affiliation(s)
- Lisa A. Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Aaron R. Ledvina
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jared Shaw
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | | - Michael S. Westphall
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| |
Collapse
|
22
|
Madsen JA, Kaoud TS, Dalby KN, Brodbelt JS. 193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. Proteomics 2011; 11:1329-34. [PMID: 21365762 DOI: 10.1002/pmic.201000565] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/30/2010] [Accepted: 01/07/2011] [Indexed: 11/07/2022]
Abstract
193-nm ultraviolet photodissociation (UVPD) was implemented to sequence singly and multiply charged peptide anions. Upon dissociation by this method, a-/x-type, followed by d and w side-chain loss ions, were the most prolific and abundant sequence ions, often yielding 100% sequence coverage. The dissociation behavior of singly and multiply charged anions was significantly different with higher charged precursors yielding more sequence ions; however, all charge states investigated (1- through 3-) produced rich diagnostic information. UVPD at 193 nm was also shown to successfully differentiate and pinpoint labile phosphorylation modifications. The sequence ions were produced with high abundances, requiring limited averaging for satisfactory spectral quality. The intact, charge-reduced radical products generated by UV photoexcitation were also subjected to collision-induced dissociation (termed, activated-electron photodetachment dissociation (a-EPD)), but UVPD alone yielded more predictable and higher abundance sequence ions. With the use of a basic (pH∼11.5), piperidine-modified mobile phase, LC-MS/UVPD was implemented and resulted in the successful analysis of mitogen-activated pathway kinases (MAPKs) using ultrafast activation times (5 ns).
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
23
|
Ko BJ, Brodbelt JS. Ultraviolet photodissociation of carboxylate-derivatized peptides in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:49-56. [PMID: 21472543 DOI: 10.1007/s13361-010-0016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The fragmentation patterns obtained by ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer were compared for peptides modified at their C-termini and at acidic amino acids. Attachment of Alexa Fluor 350 or 7-amino-4-methyl-coumarin chromophores at the C-terminal and acidic residues enhances the UV absorptivity of the peptides and all fragment ions that retain the chromophore, such as the y ions that contain the chromophore-modified C-terminus. Whereas CID results in the formation of the typical array of mainly y-type and a/b-type fragment ions, UVPD produces predominantly a/b-type ions with greatly reduced abundances of y ions. Immonium ions, mostly ones from aromatic or basic amino acids, are also observed in the low m/z range upon UVPD. UVPD of peptides containing two chromophore moieties (with one at the C-terminus and another at an acidic residue) results in even more efficient photodissociation at the expense of the annihilation of almost all diagnostic b and y ions containing the chromophore.
Collapse
Affiliation(s)
- Byoung Joon Ko
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | |
Collapse
|
24
|
Zhang L, Reilly JP. De novo sequencing of tryptic peptides derived from Deinococcus radiodurans ribosomal proteins using 157 nm photodissociation MALDI TOF/TOF mass spectrometry. J Proteome Res 2010; 9:3025-34. [PMID: 20377247 DOI: 10.1021/pr901206j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vacuum ultraviolet photodissociation of peptide ions in a matrix assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer is used to characterize peptide mixtures derived from Deinococcus radiodurans ribosomal proteins. Tryptic peptides from 52 proteins were separated by reverse-phase liquid chromatography and spotted onto a MALDI plate. From 192 sample spots, 492 peptide ions were isolated, fragmented by both photodissociation and postsource decay (PSD), and then de novo sequenced. Three-hundred seventy-two peptides yielded sequences with 5 or more amino acids. Homology searches of these sequences against the whole bacterial proteome identified 49 ribosomal proteins, 45 of which matched with two or more peptides. Peptide de novo sequencing identified slightly more proteins than conventional database searches using Mascot and was particularly advantageous in identifying unexpected peptide modifications. In the present analysis, 52 peptide modifications were identified by de novo sequencing, most of which were not recognized by database searches.
Collapse
Affiliation(s)
- Liangyi Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
25
|
Soltwisch J, Dreisewerd K. Discrimination of Isobaric Leucine and Isoleucine Residues and Analysis of Post-Translational Modifications in Peptides by MALDI In-Source Decay Mass Spectrometry Combined with Collisional Cooling. Anal Chem 2010; 82:5628-35. [DOI: 10.1021/ac1006014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jens Soltwisch
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany
| |
Collapse
|
26
|
Zhang L, Reilly JP. Peptide de novo sequencing using 157 nm photodissociation in a tandem time-of-flight mass spectrometer. Anal Chem 2010; 82:898-908. [PMID: 20058881 DOI: 10.1021/ac902050y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has previously been shown that photodissociation of tryptic peptide ions with 157 nm light in a matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer generates an abundance of x-type ions. A peptide de novo sequencing algorithm has now been developed to interpret these data. By combination of photodissociation and postsource decay (PSD) spectra, the algorithm identifies x-type ions and derives peptide sequences. The confidence of amino acid assignments is evaluated by observing complementary y-, v-, and w-type ions that provide additional constraints to sequence identification. In the analysis of 31 tryptic peptides from 4 model proteins, the algorithm identified 322 (or 90.7%) of the 355 amino acids and made only 3 incorrect assignments. The other 30 amino acids were not identified because specific needed x-type ions were not detected. Based on the observation of v- and w-type ions, 45 of 50 detected leucine and isoleucine residues were successfully distinguished and there was only one mistake. The remaining four residues were not distinguished because the corresponding v- and w-type ions were not detected. These de novo sequencing results translated into successful identification of proteins through homology searches. To evaluate the robustness of the present sequencing approach, a collection of 266 tryptic peptides from 23 model proteins were analyzed and then sequenced. A total of 167 peptides yielded sequence tags of 5 or more residues. In 5 peptides, 1 or 2 residues were incorrectly assigned.
Collapse
Affiliation(s)
- Liangyi Zhang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
27
|
Parthasarathi R, He Y, Reilly JP, Raghavachari K. New Insights into the Vacuum UV Photodissociation of Peptides. J Am Chem Soc 2010; 132:1606-10. [DOI: 10.1021/ja907975v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yi He
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|