1
|
Thompson JR, Crooks RM. Enriching Cations Using Electric Field Gradients Generated by Bipolar Electrodes in the Absence of Buffer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jonathan R. Thompson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| |
Collapse
|
2
|
Davies CD, Crooks RM. Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization. Chem Sci 2020; 11:5547-5558. [PMID: 32874498 PMCID: PMC7441690 DOI: 10.1039/d0sc01931c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we report continuous sorting of two microplastics in a trifurcated microfluidic channel using a new method called serial faradaic ion concentration polarization (fICP). fICP is an electrochemical method for forming ion depletion zones and their corresponding locally elevated electric fields in microchannels. By tuning the interplay between the forces of electromigration and convection during a fICP experiment, it is possible to control the flow of charged objects in microfluidic channels. The key findings of this report are threefold. First, fICP at two bipolar electrodes, configured in series and operated with a single power supply, yields two electric field gradients within a single microfluidic channel (i.e., serial fICP). Second, complex flow variations that adversely impact separations during fICP can be mitigated by minimizing convection by electroosmotic flow in favor of pressure-driven flow. Finally, serial fICP within a trifurcated microchannel is able to continuously and quantitatively focus, sort, and separate microplastics. These findings demonstrate that multiple local electric field gradients can be generated within a single microfluidic channel by simply placing metal wires at strategic locations. This approach opens a vast range of new possibilities for implementing membrane-free separations.
Collapse
Affiliation(s)
- Collin D Davies
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| |
Collapse
|
3
|
He M, Luo P, Hong J, Wang X, Wu H, Zhang R, Qu F, Xiang Y, Xu W. Structural Analysis of Biomolecules through a Combination of Mobility Capillary Electrophoresis and Mass Spectrometry. ACS OMEGA 2019; 4:2377-2386. [PMID: 31459477 PMCID: PMC6648644 DOI: 10.1021/acsomega.8b03224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/24/2019] [Indexed: 05/08/2023]
Abstract
The 3D structures of biomolecules determine their biological function. Established methods in biomolecule structure determination typically require purification, crystallization, or modification of target molecules, which limits their applications for analyzing trace amounts of biomolecules in complex matrices. Here, we developed instruments and methods of mobility capillary electrophoresis (MCE) and its coupling with MS for the 3D structural analysis of biomolecules in the liquid phase. Biomolecules in complex matrices could be separated by MCE and sequentially detected by MS. The effective radius and the aspect ratio of each separated biomolecule were simultaneously determined through the separation by MCE, which were then used as restraints in determining biomolecule conformations through modeling. Feasibility of this method was verified by analyzing a mixture of somatostatin and bradykinin, two peptides with known liquid-phase structures. Proteins could also be structurally analyzed using this method, which was demonstrated for lysozyme. The combination of MCE and MS for complex sample analysis was also demonstrated. MCE and MCE-MS would allow us to analyze trace amounts of biomolecules in complex matrices, which has the potential to be an alternative and powerful biomolecule structure analysis technique.
Collapse
Affiliation(s)
- Muyi He
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pan Luo
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Hong
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofeng Wang
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haimei Wu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongkai Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Xiang
- Beijing
Advanced Innovation Center for Structural Biology, Department of Basic
Medical Sciences, School of Medicine, Tsinghua
University, Beijing 100084, China
- E-mail: (Y.X.)
| | - Wei Xu
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
- E-mail: (W.X.)
| |
Collapse
|
4
|
Quist J, Vulto P, Hankemeier T. Isotachophoretic Phenomena in Electric Field Gradient Focusing: Perspectives for Sample Preparation and Bioassays. Anal Chem 2014; 86:4078-87. [DOI: 10.1021/ac403764e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jos Quist
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Paul Vulto
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| |
Collapse
|
5
|
Knust KN, Sheridan E, Anand RK, Crooks RM. Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations. LAB ON A CHIP 2012; 12:4107-4114. [PMID: 22952054 DOI: 10.1039/c2lc40660h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper we show that a microelectrochemical cell comprising two parallel microchannels spanned by a single bipolar electrode can be used to simultaneously enrich and separate both anions and cations within a single microchannel. This is possible because reduction and oxidation of water at the cathodic and anodic poles of the bipolar electrode, respectively, lead to ion depletion zones. Specifically, TrisH(+) is neutralized by OH(-) at the cathodic pole, while acetate buffer is neutralized by H(+) at the anodic pole. This action creates a local electric field gradient having both positive and negative components, and hence positive and negative ions follow their respective field gradients leading to separation. In the presence of an opposing counter-flow (pressure driven flow in this case), enrichment also occurs. In addition to separation and enrichment in a single channel, it is also possible to simultaneously enrich cations in one microchannel and anions in the other. Enrichment is achieved by controlling experimental parameters, including the type of buffer and the direction and magnitude of the opposing counter-flow.
Collapse
Affiliation(s)
- Kyle N Knust
- Department of Chemistry and Biochemistry, Center for Electrochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, USA
| | | | | | | |
Collapse
|
6
|
Sheridan E, Hlushkou D, Knust KN, Tallarek U, Crooks RM. Enrichment of Cations via Bipolar Electrode Focusing. Anal Chem 2012; 84:7393-9. [DOI: 10.1021/ac301101b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eoin Sheridan
- Department
of Chemistry and
Biochemistry, Center for Electrochemistry, and the Center for Nano-
and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin,
Texas 78712-0165, United States
| | - Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Kyle N. Knust
- Department
of Chemistry and
Biochemistry, Center for Electrochemistry, and the Center for Nano-
and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin,
Texas 78712-0165, United States
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| | - Richard M. Crooks
- Department
of Chemistry and
Biochemistry, Center for Electrochemistry, and the Center for Nano-
and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin,
Texas 78712-0165, United States
| |
Collapse
|
7
|
Kenyon SM, Weiss NG, Hayes MA. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice. Electrophoresis 2012; 33:1227-35. [PMID: 22589099 DOI: 10.1002/elps.201100622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophoretic exclusion, a novel separations technique that differentiates species in bulk solution using the opposing forces of electrophoretic velocity and hydrodynamic flow, has been adapted to a microscale device. Proof-of-principle experiments indicate that the device was able to exclude small particles (1 μm polystyrene microspheres) and fluorescent dye molecules (rhodamine 123) from the entrance of a channel. Additionally, differentiation of the rhodamine 123 and polystyrene spheres was demonstrated. The current studies focus on the direct observation of the electrophoretic exclusion behavior on a microchip.
Collapse
Affiliation(s)
- Stacy M Kenyon
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
8
|
Anand RK, Sheridan E, Knust KN, Crooks RM. Bipolar Electrode Focusing: Faradaic Ion Concentration Polarization. Anal Chem 2011; 83:2351-8. [DOI: 10.1021/ac103302j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robbyn K. Anand
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Eoin Sheridan
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Kyle N. Knust
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| | - Richard M. Crooks
- Department of Chemistry and Biochemistry, Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, United States
| |
Collapse
|
9
|
Anand RK, Sheridan E, Hlushkou D, Tallarek U, Crooks RM. Bipolar electrode focusing: tuning the electric field gradient. LAB ON A CHIP 2011; 11:518-27. [PMID: 21120239 DOI: 10.1039/c0lc00351d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bipolar electrode (BPE) focusing is a developing technique for enrichment and separation of charged analytes in a microfluidic channel. The technique employs a bipolar electrode that initiates faradaic processes that subsequently lead to formation of an ion depletion zone. The electric field gradient resulting from this depletion zone focuses ions on the basis of their individual electrophoretic mobilities. The nature of the gradient is of primary importance to the performance of the technique. Here, we report dynamic measurements of the electric field gradient showing that it is stable over time and that its axial position in the microchannel is directly correlated to the location of an enriched tracer band. The position of the gradient can be tuned with pressure-driven flow. We also show that a steeper electric field gradient decreases the breadth of the enriched tracer band and therefore enhances the enrichment process. The slope of the gradient can be tuned by altering the buffer concentration: higher concentrations result in a steeper gradient. Coating the channel with the neutral block co-polymer Pluronic also results in enhanced enrichment.
Collapse
Affiliation(s)
- Robbyn K Anand
- Department of Chemistry and Biochemistry, Center for Electrochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712-0165, USA
| | | | | | | | | |
Collapse
|
10
|
Meighan MM, Vasquez J, Dziubcynski L, Hews S, Hayes MA. Investigation of Electrophoretic Exclusion Method for the Concentration and Differentiation of Proteins. Anal Chem 2010; 83:368-73. [DOI: 10.1021/ac1025495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle M. Meighan
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Jared Vasquez
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Luke Dziubcynski
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Sarah Hews
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Mark A. Hayes
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States, and Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
11
|
Breadmore MC, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008-2010). Electrophoresis 2010; 32:127-48. [PMID: 21171119 DOI: 10.1002/elps.201000412] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/22/2023]
Abstract
Capillary electrophoresis has been alive for over two decades now; yet, its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with an update published in 2009 and covers material published through to June 2010. It includes developments in the fields of stacking, covering all methods from field-amplified sample stacking and large volume sample stacking, through to ITP, dynamic pH junction and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, TAS, Australia.
| | | | | |
Collapse
|
12
|
Burke JM, Smith CD, Ivory CF. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules. Electrophoresis 2010; 31:902-9. [PMID: 20191553 PMCID: PMC2919354 DOI: 10.1002/elps.200900589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH(-)) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles "on-the-fly" is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described.
Collapse
Affiliation(s)
- Jeffrey M Burke
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| | | | | |
Collapse
|