1
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
2
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
3
|
Liu H, Zhang J, Yang G, Zhao Q, Wang D. Organic Molecule Modified Phosphotungstate with Helical Structure for Electrochemical Detection of Dopamine. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Liu
- Department of Pharmacy Gaomi People's Hospital Shandong P. R. China
| | - Jianguo Zhang
- Department of Pharmacy Gaomi People's Hospital Shandong P. R. China
| | - Guang Yang
- Department of Pharmacy Gaomi People's Hospital Shandong P. R. China
| | - Qian Zhao
- Department of Pharmacy Gaomi People's Hospital Shandong P. R. China
| | - Deqiang Wang
- Department of Pharmacy Gaomi People's Hospital Shandong P. R. China
| |
Collapse
|
4
|
Xu M, Zhang Y, Wang K, Mao J, Ji W, Qiu W, Feng T, Zhang M, Mao L. Nanoskiving fabrication of size-controlled Au nanowire electrodes for electroanalysis. Analyst 2019; 144:2914-2921. [PMID: 30912775 DOI: 10.1039/c9an00122k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoskiving, benefiting from its simple operation and high reproducibility, is a promising method to fabricate nanometer-size electrodes. In this work, we report the fabrication of Au nanowire electrodes with different shapes and well-controlled sizes through nanoskiving. Au nanowire block electrodes, membrane electrodes and tip electrodes are prepared with good reproducibility. Steady-state cyclic voltammograms (CVs) demonstrate that all these electrodes behave well as nanoband ultramicroelectrodes. A fast heterogeneous electron transfer rate constant can be extracted reliably from steady-state CVs at various size Au nanowire block electrodes by the Koutecký-Levich (K-L) method. The Au nanowire membrane electrodes demonstrate good sensitivity toward the oxidation of catecholamine and could monitor catecholamine released from rat adrenal chromaffin cells stimulated by high K+.
Collapse
Affiliation(s)
- Muzhen Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Kai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Mao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wanling Qiu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091504] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotransmitters are molecules that transfer chemical signals between neurons to convey messages for any action conducted by the nervous system. All neurotransmitters are medically important; the detection and analysis of these molecules play vital roles in the diagnosis and treatment of diseases. Among analytical strategies, electrochemical techniques have been identified as simple, inexpensive, and less time-consuming processes. Electrochemical analysis is based on the redox behaviors of neurotransmitters, as well as their metabolites. A variety of electrochemical techniques are available for the detection of biomolecules. However, the development of a sensing platform with high sensitivity and selectivity is challenging, and it has been found to be a bottleneck step in the analysis of neurotransmitters. Nanomaterials-based sensor platforms are fascinating for researchers because of their ability to perform the electrochemical analysis of neurotransmitters due to their improved detection efficacy, and they have been widely reported on for their sensitive detection of epinephrine, dopamine, serotonin, glutamate, acetylcholine, nitric oxide, and purines. The advancement of electroanalytical technologies and the innovation of functional nanomaterials have been assisting greatly in in vivo and in vitro analyses of neurotransmitters, especially for point-of-care clinical applications. In this review, firstly, we focus on the most commonly employed electrochemical analysis techniques, in conjunction with their working principles and abilities for the detection of neurotransmitters. Subsequently, we concentrate on the fabrication and development of nanomaterials-based electrochemical sensors and their advantages over other detection techniques. Finally, we address the challenges and the future outlook in the development of electrochemical sensors for the efficient detection of neurotransmitters.
Collapse
|
6
|
Jo M, Min K, Roy B, Kim S, Lee S, Park JY, Kim S. Protein-Based Electronic Skin Akin to Biological Tissues. ACS NANO 2018; 12:5637-5645. [PMID: 29792681 DOI: 10.1021/acsnano.8b01435] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human skin provides an interface that transduces external stimuli into electrical signals for communication with the brain. There has been considerable effort to produce soft, flexible, and stretchable electronic skin (E-skin) devices. However, common polymers cannot imitate human skin perfectly due to their poor biocompatibility, biofunctionality, and permeability to many chemicals and biomolecules. Herein, we report on highly flexible, stretchable, conformal, molecule-permeable, and skin-adhering E-skins that combine a metallic nanowire (NW) network and silk protein hydrogel. The silk protein hydrogels offer high stretchability and stability under hydration through the addition of Ca2+ ions and glycerol. The NW electrodes exhibit stable operation when subjected to large deformations and hydration. Meanwhile, the hydrogel window provides water and biomolecules to the electrodes (communication between the environment and the electrode). These favorable characteristics allow the E-skin to be capable of sensing strain, electrochemical, and electrophysiological signals.
Collapse
Affiliation(s)
| | - Kyungtaek Min
- Department of Nano-Optical Engineering , Korea Polytechnic University , Siheung 15073 , Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid detection and identification of pathogenic microorganisms is fundamental to minimizing the spread of infectious disease, and informing clinicians on patient treatment strategies. This need has led to the development of enhanced biosensors that utilize state of the art nanomaterials and nanotechnology, and represent the next generation of diagnostics. A primer on nanoscale biorecognition elements such as, nucleic acids, antibodies, and their synthetic analogs (molecular imprinted polymers), will be presented first. Next the application of various nanotechnologies for biosensor transduction will be discussed, along with the inherent nanoscale phenomenon that leads to their improved performance and capabilities in biosensor systems. A future outlook on characterization and quality assurance, nanotoxicity, and nanomaterial integration into lab-on-a-chip systems will provide the closing thoughts. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Alex J Sposito
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Aditya Kurdekar
- Laboratories for Nanoscience and Nanotechnology Research, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
8
|
Thirumalraj B, Rajkumar C, Chen SM, Palanisamy S. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine. Sci Rep 2017; 7:41213. [PMID: 28128225 PMCID: PMC5269579 DOI: 10.1038/srep41213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.
Collapse
Affiliation(s)
- Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Chellakannu Rajkumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Selvakumar Palanisamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| |
Collapse
|
9
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
10
|
Muratova IS, Mikhelson KN, Ermolenko Y, Offenhäusser A, Mourzina Y. On “resistance overpotential” caused by a potential drop along the ultrathin high aspect ratio gold nanowire electrodes in cyclic voltammetry. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3280-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mahmoudian MR, Basirun WJ, Binti Alias Y. Sensitive Dopamine Biosensor Based on Polypyrrole-Coated Palladium Silver Nanospherical Composites. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Reza Mahmoudian
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department
of Chemistry, Shahid Sherafat, University of Farhangian, 15916 Tehran, Iran
| | | | - Yatimah Binti Alias
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Qiu W, Xu M, Li R, Liu X, Zhang M. Renewable and Ultralong Nanoelectrochemical Sensor: Nanoskiving Fabrication and Application for Monitoring Cell Release. Anal Chem 2015; 88:1117-22. [DOI: 10.1021/acs.analchem.5b04055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wanling Qiu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Muzhen Xu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ruixin Li
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaomeng Liu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
13
|
Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, Chen Z. Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles. Anal Chem 2015; 87:3360-5. [DOI: 10.1021/ac504520g] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaokai Chen
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Siqi Kai
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong-Yin Wang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jingjing Yang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Chemistry
and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fu-Gen Wu
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Mostafalu P, Sonkusale S. A high-density nanowire electrode on paper for biomedical applications. RSC Adv 2015. [DOI: 10.1039/c4ra12373e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different types of nanowires made from platinum, nickel and copper are fabricated and patterned with microscale resolution on paper substrates and employed for biomedical applications.
Collapse
Affiliation(s)
- P. Mostafalu
- NanoLab
- Electrical and Computer Engineering Department
- Tufts University
- Medford
- USA
| | - S. Sonkusale
- NanoLab
- Electrical and Computer Engineering Department
- Tufts University
- Medford
- USA
| |
Collapse
|
15
|
Chartuprayoon N, Zhang M, Bosze W, Choa YH, Myung NV. One-dimensional nanostructures based bio-detection. Biosens Bioelectron 2015; 63:432-443. [DOI: 10.1016/j.bios.2014.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/05/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
|
16
|
Dawson K, O'Riordan A. Electroanalysis at the nanoscale. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:163-181. [PMID: 24818810 DOI: 10.1146/annurev-anchem-071213-020133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This article reviews the state of the art of silicon chip-based nanoelectrochemical devices for sensing applications. We first describe analyte mass transport to nanoscale electrodes and emphasize understanding the importance of mass transport for the design of nanoelectrode arrays. We then describe bottom-up and top-down approaches to nanoelectrode fabrication and integration at silicon substrates. Finally, we explore recent examples of on-chip nanoelectrodes employed as sensors and diagnostics, finishing with a brief look at future applications.
Collapse
Affiliation(s)
- Karen Dawson
- Nanotechnology Group, Tyndall National Institute, University College Cork, Cork, Ireland;
| | | |
Collapse
|
17
|
Fabregat G, Estrany F, Casas MT, Alemán C, Armelin E. Detection of Dopamine Using Chemically Synthesized Multilayered Hollow Microspheres. J Phys Chem B 2014; 118:4702-9. [DOI: 10.1021/jp500959j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgina Fabregat
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Francesc Estrany
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Maria Teresa Casas
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Elaine Armelin
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Barry S, Dawson K, Correa E, Goodacre R, O'Riordan A. Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discuss 2014; 164:283-93. [PMID: 24466670 DOI: 10.1039/c3fd00027c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show a photolithography technique that permits gold nanowire array electrodes to be routinely fabricated at reasonable cost. Nanowire electrode arrays offer the potential for enhancements in electroanalysis such as increased signal-to-noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. We explore application of nanowire array electrodes to the detection of different nitroaromatic species. Characteristic reduction peaks of nitro groups are not observed at nanowire array electrodes using sweep voltammetric methods. By contrast, clear and well-defined reduction peaks are resolved using potential step square wave voltammetry. A Principle Component Analysis technique is employed to discriminate between nitroaromatic species including structural isomers of DNT. The analysis indicates that all compounds are successfully discriminated by unsupervised cluster analysis. Finally, the magnitude of the reduction peak at -671 mV for different concentrations of TNT exhibited excellent linearity with increasing concentrations enabling sub-150 ng mL(-1) limits of detection.
Collapse
Affiliation(s)
- Sean Barry
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Karen Dawson
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Elon Correa
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland
| |
Collapse
|
19
|
Zhao Y, Chu J, Li SH, Li WW, Liu G, Tian YC, Yu HQ. Non-Enzymatic Electrochemical Detection of Glucose with a Gold Nanowire Array Electrode. ELECTROANAL 2014. [DOI: 10.1002/elan.201300565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
|
21
|
Dawson K, Baudequin M, Sassiat N, Quinn AJ, O’Riordan A. Electroanalysis at discrete arrays of gold nanowire electrodes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Lee SW, Lopez J, Saraf RF. Fabrication and Properties of Redox Ion Doped Few Monolayer Thick Polyelectrolyte Film for Electrochemical Biosensors at High Sensitivity and Specificity. ELECTROANAL 2013. [DOI: 10.1002/elan.201300076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Biji P, Patnaik A. Interfacial Janus gold nanoclusters as excellent phase- and orientation-specific dopamine sensors. Analyst 2013; 137:4795-801. [PMID: 22937530 DOI: 10.1039/c2an35964b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This investigation, following our recent report on the one-pot hemi-micellar interfacial synthesis of Janus gold nanoclusters and the inter-cluster electron coupling establishing insulator-metal transition in the oriented Janus monolayers [Langmuir, 2010, 26(17), 14047], was to fabricate modified electrodes for sensing dopamine, the neurotransmitter. With a detection limit in the sub-nanomolar range, the apparent electron transfer rate constants for dopamine detection signified an intricate Janus cluster 2D phase dependency. Surface pressure as a thermodynamic variable controlled the electronic communication between the clusters as a result of varied inter-cluster distance and size, ultimately reflecting on the sensitivity and detection limit for dopamine sensing. The non-covalent nature of the ligands on the core metal clusters facilitated the overall electro-catalytic oxidation of dopamine. The notable feature of this precise work was that it established a more effective phase- and orientation-specific Janus cluster sensing than those reported through patterned gold nanowire based sensors.
Collapse
Affiliation(s)
- P Biji
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
24
|
Wahl A, Dawson K, MacHale J, Barry S, Quinn AJ, O'Riordan A. Gold nanowire electrodes in array: simulation study and experiments. Faraday Discuss 2013; 164:377-90. [DOI: 10.1039/c3fd00025g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 2012; 405:3753-71. [PMID: 23241816 PMCID: PMC3608872 DOI: 10.1007/s00216-012-6578-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.
Collapse
|
26
|
Hsu MS, Chen YL, Lee CY, Chiu HT. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5570-5575. [PMID: 23020235 DOI: 10.1021/am301452b] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we fabricated Au nanowires (NWs), nanoslices (NSs), and nanocorals (NCs) on flexible polyethylene terephthalate (PET) substrates via direct current electrochemical depositions. Without any surface modification, the Au nanostructures were used as the electrodes for dopamine (DA) sensing. Among them, the Au NW electrode performed exceptionally well. The determined linear range for DA detection was 0.2-600 μM (N = 3) and the sensitivity was 178 nA/μM cm(2), while the detection limit was 26 nM (S/N = 3). After 10 repeated measurements, 95% of the original anodic current values were maintained for the nanostructured electrodes. Sequential additions of citric acid (CA, 1 mM), uric acid (UA, saturated), and ascorbic acid (AA, 1 μM) did not interfere the amperometric response from the addition of DA (0.1 μM).
Collapse
Affiliation(s)
- Ming-Sheng Hsu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
| | | | | | | |
Collapse
|
27
|
Zhao Y, Li SH, Chu J, Chen YP, Li WW, Yu HQ, Liu G, Tian YC, Xiong Y. A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. Biosens Bioelectron 2012; 35:115-122. [PMID: 22410488 DOI: 10.1016/j.bios.2012.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
Abstract
One big challenge of fabricating nanosensors for spatially resolved electrochemical detection of neurochemicals, such as dopamine (DA), is the difficulty to assembly nanometer-scale patternable and integrated sensors. In this work we develop a novel approach to precisely manufacture nano-Au-electrode (NAE) using lithographic fabrication technique, and characterize the NAE for DA detection. A negative photoresist, SU-8, is used as a substrate and protection layer for the 127-nm Au active sensing layer. The cross surface morphology and thickness of the Au layer are imaged by scanning electron microscopy and an interference microscopy. This NAE could be precisely controlled, repeatedly fabricated and conveniently renewed for several times. The electrochemical sensitivity and selectivity of the NAE towards DA detection are significantly higher than those of a standard Au thin-film electrode. This work demonstrates that the NAE could be used as an attractive means for electrochemically sensing and recording DA.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Shu-Hong Li
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Jian Chu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - You-Peng Chen
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230026, China
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230026, China
| | - Ying Xiong
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Matos IDO, Alves WA. Electrochemical determination of dopamine based on self-assembled peptide nanostructure. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4437-43. [PMID: 21970523 DOI: 10.1021/am201101d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Self-assembled peptide nanostructures are electronically insulating as are most biomaterials derived from natural amino acids. To obtain additional properties and increase the applicability of peptide nanomaterials, some chemical modifications can be performed and materials can be functionalized to form hybrid compounds. In this work, we described the formation of L-diphenylalanine nanotubes (PNTs) with cyclic-tetrameric copper(II) species containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine [Cu(4)(apyhist)(4)](4+) in the Nafion membrane on a vitreous carbon electrode surface. This copper complex has been studied as structural and functional models for the active centers of copper containing redox enzymes. Scanning electron microscopy was used to confirm the formation of the nanostructures. The electrochemical properties of the PNT-[Cu(4)(apyhist)(4)](4+)/Nafion film on a glassy carbon electrode were characterized using cyclic voltammetry and square-wave voltammetry and showed high electrocatalytic activity toward the oxidation of dopamine (DA). The detection sensitivity was found to be enhanced by the use of copper(II) complex in the PNTs/Nafion films. Under the optimum conditions, the square-wave voltammetry peak height was linearly related to the DA concentration over two concentration intervals, viz., 5.0-40 μmol L(-1) and 40-1000 μmol L(-1). The detection limit was 2.80 μmol L(-1) (S/N = 3), and ascorbic acid did not interfere with the DA detection. These results suggested that this hybrid bioinorganic system provides an attractive advantage for a new type of electrochemical sensors. The detection sensitivity was found to be enhanced by use of PNTs.
Collapse
|
29
|
Kisner A, Heggen M, Fernández E, Lenk S, Mayer D, Simon U, Offenhäusser A, Mourzina Y. The Role of Oxidative Etching in the Synthesis of Ultrathin Single-Crystalline Au Nanowires. Chemistry 2011; 17:9503-7. [DOI: 10.1002/chem.201100169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/06/2011] [Indexed: 11/12/2022]
|
30
|
Kätelhön E, Hofmann B, Lemay SG, Zevenbergen MAG, Offenhäusser A, Wolfrum B. Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. Anal Chem 2011; 82:8502-9. [PMID: 20849083 DOI: 10.1021/ac101387f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical mapping of neurotransmitter concentrations on a chip promises to be an interesting technique for investigating synaptic release in cellular networks. In here, we present a novel chip-based device for the detection of neurotransmitter fluctuations in real-time. The chip features an array of plane-parallel nanocavity sensors, which strongly amplify the electrochemical signal. This amplification is based on efficient redox cycling via confined diffusion between two electrodes inside the nanocavity sensors. We demonstrate the capability of resolving concentration fluctuations of redox-active species in a microfluidic mixing gradient on the chip. The results are explained by a simulated concentration profile that was calculated on the basis of the coupled Navier-Stokes and convection-diffusion equations using a finite element approach.
Collapse
Affiliation(s)
- Enno Kätelhön
- Institut für Bio- und Nanosysteme (IBN), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Rezaei B, Damiri S. Electrodeposited silver nanodendrites electrode with strongly enhanced electrocatalytic activity. Talanta 2010; 83:197-204. [DOI: 10.1016/j.talanta.2010.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/06/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
|
32
|
Martí M, Fabregat G, Estrany F, Alemán C, Armelin E. Nanostructured conducting polymer for dopamine detection. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01364a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|