1
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
2
|
Kishimoto Y, Fujii A, Nakagawa O, Obika S. Enhanced duplex- and triplex-forming ability and enzymatic resistance of oligodeoxynucleotides modified by a tricyclic thymine derivative. Org Biomol Chem 2021; 19:8063-8074. [PMID: 34494641 DOI: 10.1039/d1ob01462e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized an artificial nucleic acid, [3-(1,2-dihydro-2-oxobenzo[b][1,8]naphthyridine)]-2'-deoxy-D-ribofuranose (OBN), with a tricyclic structure in a nucleobase as a thymidine analog. Oligodeoxynucleotides (ODNs) containing consecutive OBN displayed improved duplex-forming ability with complementary single-stranded (ss) RNA and triplex-forming ability with double-stranded DNA in comparison with ODNs composed of natural thymidine. OBN-modified ODNs also displayed enhanced enzymatic resistance compared with ODNs with natural thymidine and phosphorothioate modification, respectively, due to the structural steric hindrance of the nucleobase. The fluorescence spectra of OBN-modified ODNs showed sufficient fluorescence intensity with ssDNA and ssRNA, which is an advantageous feature for fluorescence imaging techniques of nucleic acids with longer emission wavelengths than bicyclic thymine (bT).
Collapse
Affiliation(s)
- Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
4
|
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F, Sarac I, Hollenstein MR, Dahlén A, Esbjörner EK, Wilhelmsson LM. Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. J Am Chem Soc 2021; 143:5413-5424. [PMID: 33797236 PMCID: PMC8154517 DOI: 10.1021/jacs.1c00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Methods for tracking
RNA inside living cells without perturbing
their natural interactions and functions are critical within biology
and, in particular, to facilitate studies of therapeutic RNA delivery.
We present a stealth labeling approach that can efficiently, and with
high fidelity, generate RNA transcripts, through enzymatic incorporation
of the triphosphate of tCO, a fluorescent tricyclic cytosine
analogue. We demonstrate this by incorporation of tCO in
up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding
for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization
of this mRNA shows that the incorporation rate of tCO is
similar to cytosine, which allows for efficient labeling and controlled
tuning of labeling ratios for different applications. Using live cell
confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human
cells. Hence, we not only develop the use of fluorescent base analogue
labeling of nucleic acids in live-cell microscopy but also, importantly,
show that the resulting transcript is translated into the correct
protein. Moreover, the spectral properties of our transcripts and
their translation product allow for their straightforward, simultaneous
visualization in live cells. Finally, we find that chemically transfected
tCO-labeled RNA, unlike a state-of-the-art fluorescently
labeled RNA, gives rise to expression of a similar amount of protein
as its natural counterpart, hence representing a methodology for studying
natural, unperturbed processing of mRNA used in RNA therapeutics and
in vaccines, like the ones developed against SARS-CoV-2.
Collapse
Affiliation(s)
- Tom Baladi
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Cécile Gasse
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Fabienne Levi-Acobas
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Ivo Sarac
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Marcel R Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Turner MB, Purse BW. Fluorescent Tricyclic Cytidine Analogues as Substrates for Retroviral Reverse Transcriptases. Chempluschem 2020; 85:855-865. [PMID: 32378814 DOI: 10.1002/cplu.202000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Indexed: 11/05/2022]
Abstract
We report on the ability of the reverse transcriptases (RTs) from avian myeloblastosis virus (AMV), Moloney murine leukemia virus (M-MLV), and human immunodeficiency virus 1 (HIV-1) to generate labeled DNA using the fluorescent tricyclic cytidine analogues d(tC)TP and d(DEA tC)TP as substrates. Michaelis-Menten kinetics for the insertion of these analogues show Vmax /KM from 0.0-5 times that of natural dCTP across from G, depending on the polymerase and whether the template is RNA or DNA. The analogues are prone to misinsertion across from adenosine with both RNA and DNA templates. Elongation after analogue insertion is efficient with RNA templates, but the analogues cause stalling after insertion with DNA templates. A model reverse transcription assay using HIV-1-RT, including RNA-dependent DNA synthesis, degradation of the RNA template by the RT's RNase H activity, and synthesis of a second DNA strand to form fluorescently labeled dsDNA, shows that d(tC)TP and d(DEA tC)TP are compatible with a complete reverse transcription cycle in vitro.
Collapse
Affiliation(s)
- M Benjamin Turner
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
6
|
Kuznetsova AA, Kladova OA, Barthes NPF, Michel BY, Burger A, Fedorova OS, Kuznetsov NA. Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Graphene Oxide-Based Nanostructured DNA Sensor. BIOSENSORS-BASEL 2019; 9:bios9020074. [PMID: 31151203 PMCID: PMC6627418 DOI: 10.3390/bios9020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
Quick detection of DNA sequence is vital for many fields, especially, early-stage diagnosis. Here, we develop a graphene oxide-based fluorescence quenching sensor to quickly and accurately detect small amounts of a single strand of DNA. In this paper, fluorescent magnetic nanoparticles (FMNPs) modified with target DNA sequence (DNA-t) were bound onto the modified graphene oxide acting as the fluorescence quenching element. FMNPs are made of iron oxide (Fe3O4) core and fluorescent silica (SiO2) shell. The average particle size of FMNPs was 74 ± 6 nm and the average thickness of the silica shell, estimated from TEM results, was 30 ± 4 nm. The photoluminescence and magnetic properties of FMNPs have been investigated. Target oligonucleotide (DNA-t) was conjugated onto FMNPs through glutaraldehyde crosslinking. Meanwhile, graphene oxide (GO) nanosheets were produced by a modified Hummers method. A complementary oligonucleotide (DNA-c) was designed to interact with GO. In the presence of GO-modified with DNA-c, the fluorescence intensity of FMNPs modified with DNA-t was quenched through a FRET quenching mechanism. Our study indicates that FMNPs can not only act as a FRET donor, but also enhance the sensor accuracy by magnetically separating the sensing system from free DNA and non-hybridized GO. Results indicate that this sensing system is ideal to detect small amounts of DNA-t with limitation detection at 0.12 µM.
Collapse
|
8
|
Füchtbauer AF, Preus S, Börjesson K, McPhee SA, Lilley DMJ, Wilhelmsson LM. Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations. Sci Rep 2017; 7:2393. [PMID: 28539582 PMCID: PMC5443824 DOI: 10.1038/s41598-017-02453-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.
Collapse
Affiliation(s)
- Anders Foller Füchtbauer
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Søren Preus
- Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Scott A McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - L Marcus Wilhelmsson
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden.
| |
Collapse
|
9
|
Burns DD, Teppang KL, Lee RW, Lokensgard ME, Purse BW. Fluorescence Turn-On Sensing of DNA Duplex Formation by a Tricyclic Cytidine Analogue. J Am Chem Soc 2017; 139:1372-1375. [PMID: 28080035 DOI: 10.1021/jacs.6b10410] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most fluorescent nucleoside analogues are quenched when base stacked and some maintain their brightness, but there has been little progress toward developing nucleoside analogues that markedly increase their fluorescence upon duplex formation. Here, we report on the design and synthesis of a new tricyclic cytidine analogue, 8-diethylamino-tC (8-DEA-tC), that responds to DNA duplex formation with up to a 20-fold increase in fluorescent quantum yield as compared with the free nucleoside, depending on neighboring bases. This turn-on response to duplex formation is the greatest of any reported nucleoside analogue that can participate in Watson-Crick base pairing. Measurements of the quantum yield of 8-DEA-tC mispaired with adenosine and, separately, opposite an abasic site show that there is almost no fluorescence increase without the formation of correct Watson-Crick hydrogen bonds. Kinetic isotope effects from the use of deuterated buffer show that the duplex protects 8-DEA-tC against quenching by excited state proton transfer. These results, supported by DFT calculations, suggest a rationale for the observed photophysical properties that is dependent on duplex integrity and the electronic structure of the analogue.
Collapse
Affiliation(s)
- Dillon D Burns
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Kristine L Teppang
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Raymond W Lee
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Melissa E Lokensgard
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University , San Diego, California 92182, United States
| |
Collapse
|
10
|
Kuznetsov NA, Kladova OA, Kuznetsova AA, Ishchenko AA, Saparbaev MK, Zharkov DO, Fedorova OS. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III. J Biol Chem 2015; 290:14338-49. [PMID: 25869130 DOI: 10.1074/jbc.m114.621128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3'-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln(41) and Leu(81) as DNA lesion sensors.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga A Kladova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexander A Ishchenko
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Murat K Saparbaev
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Dmitry O Zharkov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| |
Collapse
|
11
|
Dziuba D, Pohl R, Hocek M. Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjug Chem 2014; 25:1984-95. [PMID: 25290695 DOI: 10.1021/bc5003554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New fluorescent nucleosides and nucleoside triphosphate (dNTPs) analogs bearing the F-Bodipy fluorophore linked through a short, flexible nonconjugate tether were synthesized. The Bodipy-labeled dNTPs were substrates for several DNA polymerases which incorporated them into DNA in primer extension, nicking enzyme amplification reaction, and polymerase chain reaction. The fluorescence of F-Bodipy is not quenched upon incorporation in DNA and can be detected both in solutions and on gels.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
12
|
New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions. PLoS One 2014; 9:e100007. [PMID: 24925085 PMCID: PMC4055743 DOI: 10.1371/journal.pone.0100007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.
Collapse
|
13
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Sato K, Sasaki A, Matsuda A. Highly fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate as an efficient substrate for DNA polymerases. Chembiochem 2011; 12:2341-6. [PMID: 21887841 DOI: 10.1002/cbic.201100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Indexed: 11/08/2022]
Abstract
We herein describe the synthesis of fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate (d(bt)UTP) and primer extension reactions using d(bt)UTP. We also carried out primer extension reactions using the (bt)U template. B family DNA polymerases, such as KOD, Deep Vent (exo-), and 9°N(m) DNA polymerases, were effective for elongation with d(bt)UTP. Deep Vent (exo-) and KOD DNA polymerases have excellent fidelity for incorporating d(bt)UTP only at the site opposite the adenine template and only dATP when using the (bt)U template. Therefore, d(bt)UTP is an excellent fluorescent nucleotide that can be incorporated into DNA by DNA polymerases.
Collapse
Affiliation(s)
- Kousuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
15
|
Stengel G, Purse BW, Kuchta RD. Effect of transition metal ions on the fluorescence and Taq-catalyzed polymerase chain reaction of tricyclic cytidine analogs. Anal Biochem 2011; 416:53-60. [PMID: 21600183 DOI: 10.1016/j.ab.2011.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022]
Abstract
The cytosine analogs 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) stand out among fluorescent bases due to their unquenched fluorescence emission in double-stranded DNA. Recently, we reported a method for the generation of densely tCo-labeled DNA by polymerase chain reaction (PCR) that relied on the use of the extremely thermostable Deep Vent polymerase. We have now developed a protocol that employs the more commonly used Taq polymerase. Supplementing the PCR with Mn(2+) or Co(2+) ions dramatically increased the amount of tCo triphosphate (dtCoTP) incorporated and, thus, enhanced the brightness of the PCR products. The resulting PCR products could be easily detected in gels based on their intrinsic fluorescence. The Mn(2+) ions modulate the PCR by improving the bypass of template tCo and the overall catalytic efficiency. In contrast to the lower fidelity during tCo bypass, Mn(2+) improved the ability of Taq polymerase to distinguish between dtCoTP and dTTP when copying a template dA. Interestingly, Mn(2+) ions hardly affect the fluorescence emission of tC(o), whereas the coordination of Co(2+) ions with the phosphate groups of DNA and nucleotides statically quenches tC(o) fluorescence with small reciprocal Stern-Vollmer constants of 10-300μM.
Collapse
Affiliation(s)
- Gudrun Stengel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
16
|
Dierckx A, Dinér P, El-Sagheer AH, Kumar JD, Brown T, Grøtli M, Wilhelmsson LM. Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Res 2011; 39:4513-24. [PMID: 21278417 PMCID: PMC3105426 DOI: 10.1093/nar/gkr010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA.
Collapse
Affiliation(s)
- Anke Dierckx
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat Protoc 2010; 5:1312-23. [DOI: 10.1038/nprot.2010.77] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Abstract
The use of fluorescent nucleic acid base analogues is becoming increasingly important in the fields of biology, biochemistry and biophysical chemistry as well as in the field of DNA nanotechnology. The advantage of being able to incorporate a fluorescent probe molecule close to the site of examination in the nucleic acid-containing system of interest with merely a minimal perturbation to the natural structure makes fluorescent base analogues highly attractive. In recent years, there has been a growing interest in developing novel candidates in this group of fluorophores for utilization in various investigations. This review describes the different classes of fluorophores that can be used for studying nucleic acid-containing systems, with an emphasis on choosing the right kind of probe for the system under investigation. It describes the characteristics of the large group of base analogues that has an emission that is sensitive to the surrounding microenvironment and gives examples of investigations in which this group of molecules has been used so far. Furthermore, the characterization and use of fluorescent base analogues that are virtually insensitive to changes in their microenvironment are described in detail. This group of base analogues can be used in several fluorescence investigations of nucleic acids, especially in fluorescence anisotropy and fluorescence resonance energy transfer (FRET) measurements. Finally, the development and characterization of the first nucleic base analogue FRET pair, tC(O)-tC(nitro), and its possible future uses are discussed.
Collapse
|
19
|
Stengel G, Urban M, Purse BW, Kuchta RD. Incorporation of the fluorescent ribonucleotide analogue tCTP by T7 RNA polymerase. Anal Chem 2010; 82:1082-9. [PMID: 20067253 DOI: 10.1021/ac902456n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent RNA is an important analytical tool in medical diagnostics, RNA cytochemistry, and RNA aptamer development. We have synthesized the fluorescent ribonucleotide analogue 1,3-diaza-2-oxophenothiazine-ribose-5'-triphosphate (tCTP) and tested it as substrate for T7 RNA polymerase in transcription reactions, a convenient route for generating RNA in vitro. When transcribing a guanine, T7 RNA polymerase incorporates tCTP with 2-fold higher catalytic efficiency than CTP and efficiently polymerizes additional NTPs onto the tC. Remarkably, T7 RNA polymerase does not incorporate tCTP with the same ambivalence opposite guanine and adenine with which DNA polymerases incorporate the analogous dtCTP. While several DNA polymerases discriminated against a d(tC-A) base pair only by factors <10, T7 RNA polymerase discriminates against tC-A base pair formation by factors of 40 and 300 when operating in the elongation and initiation mode, respectively. These catalytic properties make T7 RNA polymerase an ideal tool for synthesizing large fluorescent RNA, as we demonstrated by generating a approximately 800 nucleotide RNA in which every cytosine was replaced with tC.
Collapse
Affiliation(s)
- Gudrun Stengel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 30309-0215, USA
| | | | | | | |
Collapse
|
20
|
Urban M, Joubert N, Hocek M, Kuchta RD. Mechanisms by which human DNA primase chooses to polymerize a nucleoside triphosphate. Biochemistry 2010; 49:727-35. [PMID: 20030400 PMCID: PMC2847881 DOI: 10.1021/bi9019516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA primase synthesizes short RNA primers that DNA polymerase alpha then elongates during the initiation of all new DNA strands. Even though primase misincorporates NTPs at a relatively high frequency, this likely does not impact the final DNA product since the RNA primer is replaced with DNA. We used an extensive series of purine and pyrimidine analogues to provide further insights into the mechanism by which primase chooses whether or not to polymerize a NTP. Primase readily polymerized a size-expanded cytosine analogue, 1,3-diaza-2-oxophenothiazine NTP, across from a templating G but not across from A. The enzyme did not efficiently polymerize NTPs incapable of forming two Watson-Crick hydrogen bonds with the templating base with the exception of UTP opposite purine deoxyribonucleoside. Likewise, primase did not generate base pairs between two nucleotides with altered Watson-Crick hydrogen-bonding patterns. Examining the mechanism of NTP polymerization revealed that human primase can misincorporate NTPs via both template misreading and a primer-template slippage mechanism. Together, these data demonstrate that human primase strongly depends on Watson-Crick hydrogen bonds for efficient nucleotide polymerization, much more so than the mechanistically related herpes primase, and provide insights into the potential roles of primer-template stability and base tautomerization during misincorporation.
Collapse
Affiliation(s)
- Milan Urban
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309 and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | - Robert D. Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309 and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|