1
|
Chen K, Wan Q, Wei S, Nie W, Zhou S, Chen S. Recent Advances in On-Line Mass Spectrometry Toolbox for Mechanistic Studies of Organic Electrochemical Reactions. Chemistry 2024; 30:e202402215. [PMID: 39083258 DOI: 10.1002/chem.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 09/25/2024]
Abstract
Electrochemical reactions are very complex and involve a variety of physicochemical processes. Accurate and systematic monitoring of intermediate process changes during the reaction is essential for understanding the mechanism of electrochemical reactions and is the basis for rational design of new electrochemical reactions. On-line electrochemical analysis based on mass spectrometry (MS) has become an important tool for studying electrochemical reactions. This technique is based on different ionization and sampling means and realizes on-line analysis of electrochemical reactions by establishing electrochemistry-MS (EC-MS) coupling devices. In particular, it provides key evidence for elucidating the reaction mechanism by capturing and identifying the reactive reaction intermediates. This review will categorize various EC-MS devices and the organic electrochemical reaction systems they study, highlighting the latest research progress in recent years. It will also analyze the properties of various devices and look forward to the future development of EC-MS.
Collapse
Affiliation(s)
- Kaixiang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shiqi Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wenjin Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shibo Zhou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
2
|
FNU PIJ, Tanim-Al-Hassan M, Yaroshuk T, Ai Y, Chen H. Absolute Quantitation of Peptides and Proteins by Coulometric Mass Spectrometry After Derivatization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117153. [PMID: 38009161 PMCID: PMC10673616 DOI: 10.1016/j.ijms.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Peptide/protein quantitation using mass spectrometry (MS) is advantageous due to its high sensitivity. Traditional absolute peptide quantitation methods rely on making calibration curves using peptide standards or isotope-labelled peptide standards, which are expensive and take time to synthesize. A method which can eliminate the need for using standards would be beneficial. Recently, we developed coulometric mass spectrometry (CMS) which can be used to quantify peptides that are oxidizable (e.g., those containing tyrosine or tryptophan), without using peptide standard. The method is based on electrochemical oxidation of peptides followed by MS to measure the oxidation yield. However, it cannot be directly used to quantify peptides without oxidizable residues. To extend this method for quantifying peptides/proteins in general, in this study, we adopted a derivatization strategy, in which a target peptide is first tagged with an electroactive reagent such as monocarboxymethylene blue NHS ester (MCMB-NHS ester), followed with quantitation by CMS. To illustrate the power of this method, we have analyzed peptides MG and RPPGFSPFR. The quantification error was less than 5%. Using RPPGFSPFR as an example, the quantitation sensitivity of the technique was found to be 0.25 pmol. Furthermore, we also used the strategy to quantify proteins cytochrome C and β-casein with an error of 2-26%.
Collapse
Affiliation(s)
- Praneeth Ivan Joel FNU
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Md. Tanim-Al-Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Timothy Yaroshuk
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
3
|
Vasileva ID, Samgina TY, Meng Z, Zubarev RA, Lebedev AT. EThcD Benefits for the Sequencing Inside Intramolecular Disulfide Cycles of Amphibian Intact Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1979-1988. [PMID: 37525119 DOI: 10.1021/jasms.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Disulfide bonds formed by a pair of cysteine residues in the peptides' backbone represent a certain problem for their sequencing by means of mass spectrometry. As a rule, in proteomics, disulfide bonds should be cleaved before the analysis followed by some sort of chemical derivatization. That step is time-consuming and may lead to losses of minor peptides of the analyzed mixtures due to incomplete reaction, adsorption on the walls of the vials, etc. Certain problems in the de novo top-down sequencing of amphibian skin peptides are caused by the C-terminal disulfide loop, called the Rana box. Its reduction with or without subsequent derivatization was considered to be an unavoidable step before mass spectrometry. In the present study, EThcD demonstrated its efficiency in sequencing intact disulfide-containing peptides without any preliminary derivatization. Applied to the secretion of three frog species, EThcD provided the full sequence inside the intramolecular disulfide cycle for all S-S-containing peptides found in the samples, with the only exception being diarginine species. Proteolytic fragments, which are shorter than the original peptides, were helpful in some cases. HCD should be mentioned as a complementary tool to the EThcD tool, being useful as a confirmation method for some sequence details.
Collapse
Affiliation(s)
- Irina D Vasileva
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Tatiana Yu Samgina
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| |
Collapse
|
4
|
Chen J, Wang X, Cui X, Li Y, Feng Y, Wei Z. In Situ Probing and Identification of Electrochemical Reaction Intermediates by Floating Electrolytic Electrospray Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202219302. [PMID: 36710258 DOI: 10.1002/anie.202219302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The in-depth study of electrochemical (EC) synthesis can require a powerful mass spectrometry (MS) analytical platform which can discover and identify fleeting intermediates in EC reactions. Here we report a floating electrolytic electrospray ionization (FE-ESI) strategy that can perform EC processes in a floating electrolytic cell and monitor intermediates by high-resolution MS. Compared with previous EC-MS methods, a significant advantage of FE-ESI-MS is that it allows one to modulate the electrolytic and electrospray process individually, ensuring its high sensitivity in discovering intermediates and universality to investigate redox reactions in different scenarios. This powerful platform has been successfully used to investigate the EC reductive coupling of p-tolylboronic acid and p-nitrotoluene. A series of nitrene intermediates were discovered and identified by FE-ESI-MS, indicating that a hidden mechanism involving nitrene formation might play a key role in EC reductive coupling process.
Collapse
Affiliation(s)
- Jianxiong Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiangyu Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xi Cui
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongyi Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Wei
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Yao H, Sherer EC, Lu M, Small J, Martin GE, Lam YH, Chen Q, Helmy R, Liu Y, Chen H. One-Step Regio- and Stereoselective Electrochemical Synthesis of Orexin Receptor Antagonist Oxidative Metabolites. J Org Chem 2022; 87:15011-15021. [PMID: 36322780 PMCID: PMC10512451 DOI: 10.1021/acs.joc.2c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of drug metabolites, which often have complex structures, is an integral step in the evaluation of drug candidate metabolism, pharmacokinetic (PK) properties, and safety profiles. Frequently, such synthetic endeavors entail arduous, multiple-step de novo synthetic routes. Herein, we present the one-step Shono-type electrochemical synthesis of milligrams of chiral α-hydroxyl amide metabolites of two orexin receptor antagonists, MK-8133 and MK-6096, as revealed by a small-scale (pico- to nano-mole level) reaction screening using a lab-built online electrochemistry (EC)/mass spectrometry (MS) (EC/MS) platform. The electrochemical oxidation of MK-8133 and MK-6096 was conducted in aqueous media and found to produce the corresponding α-piperidinols with exclusive regio- and stereoselectivity, as confirmed by high-resolution nuclear magnetic resonance (NMR) characterization of products. Based on density functional theory (DFT) calculations, the exceptional regio- and stereoselectivity for this electrochemical oxidation are governed by more favorable energetics of the transition state, leading to the preferred secondary carbon radical α to the amide group and subsequent steric hindrance associated with the U-shaped conformation of the cation derived from the secondary α-carbon radical, respectively.
Collapse
Affiliation(s)
- Huifang Yao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Edward C. Sherer
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Mei Lu
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | - James Small
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Gary E. Martin
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Yu-hong Lam
- Computational and Structural Chemistry, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Qinghao Chen
- Process Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Roy Helmy
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Yong Liu
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Hao Chen
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Vanduijn MM, Brouwer HJ, Sanz de la Torre P, Chervet JP, Luider TM. Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins. Anal Chem 2022; 94:3120-3125. [PMID: 35119270 DOI: 10.1021/acs.analchem.1c04261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical reduction of intermolecular disulfide bridges has previously been demonstrated in immunoglobulins but failed to achieve reduction of intramolecular bonds. We now report an improved method that achieves the full reduction of both intermolecular and intramolecular disulfide bridges in a set of monoclonal antibodies based on their intact mass and on MS/MS analysis. The system uses an online electrochemical flow cell positioned online between a chromatography system and a mass spectrometer to give direct information on pairs of heavy and light chains in an antibody. The complete reduction of the intramolecular disulfide bridges is important, as the redox state affects the intact mass of the antibody chain. Disulfide bonds also hamper MS/MS fragmentation of protein chains and thus limit the confirmation of the amino acid sequence of the protein of interest. The improved electrochemical system and associated protocols can simplify sample processing prior to analysis, as chemical reduction is not required. Also, it opens up new possibilities in the top-down mass spectrometry analysis of samples containing complex biomolecules with inter- and intramolecular disulfide bridges.
Collapse
Affiliation(s)
- Martijn M Vanduijn
- Department of Neurology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | - Theo M Luider
- Department of Neurology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
7
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|
9
|
Li W, Sun J, Gao Y, Zhang Y, Ouyang J, Na N. Monitoring of electrochemical reactions on different electrode configurations by ambient mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Liu C, Wang Q, Hivick BE, Ai Y, Champagne PA, Pan Y, Chen H. Capture of Electrochemically Generated Fleeting Carbazole Radical Cations and Elucidation of Carbazole Dimerization Mechanism by Mass Spectrometry. Anal Chem 2020; 92:15291-15296. [PMID: 33084312 DOI: 10.1021/acs.analchem.0c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The capture of reactive intermediates is important for the elucidation of reaction mechanisms. We report the first observation of electrochemically generated, short-lived radical cations of carbazole (t1/2 ≈ 97 μs) and two N-substituted carbazole derivatives by mass spectrometry. In addition, online investigation of the reactivity of electrochemically generated carbazole radical cations supports that the carbazole dimerization mechanism involves the reaction of one radical cation with one neutral molecule rather than the previously proposed coupling of two radical cations.
Collapse
Affiliation(s)
- Chengyuan Liu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Brian E Hivick
- Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Pier Alexandre Champagne
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
11
|
Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chem Sci 2020; 12:969-975. [PMID: 34163863 PMCID: PMC8179209 DOI: 10.1039/d0sc05665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Qile Wang
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Yasmine M Mohamed
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Carlos Pacheco
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| |
Collapse
|
12
|
Mao F, Yu K, He J, Zhou Q, Zhang G, Wang W, Li N, Zhang H, Jiang J. Real-time monitoring of electroreduction and labelling of disulfide-bonded peptides and proteins by mass spectrometry. Analyst 2019; 144:6898-6904. [PMID: 31638109 DOI: 10.1039/c9an01420a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accurate determination of disulfide bonds for protein identification is in high demand. In this study, a simple electrochemical-mass spectrometry (EC-MS) method that possesses advantages of real-time information, simultaneous disulfide bond electroreduction and tagging was developed. In this EC-MS, an ITO glass corner functions as a counter electrode and spray system, and allows the direct sampling of the droplet-scale reacting solution in real-time. The application of this method was successfully demonstrated by electrochemical reduction of oxidized glutathione (GSSG) with one disulfide bond as well as insulin with multiple disulfide bonds. The preferred electroreduction of intermolecular-bonded disulfides for insulin has been observed and the intramolecular bond was not favored. Moreover, simultaneously tagging the formed thiol residues from electroreduction of GSSG using electrogenerated intermediates such as dopamine orthoquinone (DQ) and benzoquinone (Q) was performed. A proof-of-concept was also demonstrated with a large molecule, β-lactoglobulin A. The relationship between signal strength and operating parameters was also studied. This method successfully detected the reduction reaction of the disulfide bond in the polypeptide and protein. The detection limit (S/N ≥ 3) is 0.398 μg mL-1. These results suggest that this EC-MS platform can count cysteine moieties in proteins using a single drop of sample and in real-time and is promising for protein identification experiments.
Collapse
Affiliation(s)
- Fengjiao Mao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao P, Zare RN, Chen H. Absolute Quantitation of Oxidizable Peptides by Coulometric Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2398-2407. [PMID: 31429055 DOI: 10.1007/s13361-019-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Quantitation methods for peptides using mass spectrometry have advanced rapidly. These methods rely on using standard and/or isotope-labeled peptides, which might be difficult or expensive to synthesize. To tackle this challenge, we present a new approach for absolute quantitation without the use of standards or calibration curves based on coulometry combined with mass spectrometry (MS). In this approach, which we call coulometric mass spectrometry (CMS), the mass spectrum of a target peptide containing one or more tyrosine residues is recorded before and after undergoing electrochemical oxidation. We record the total integrated oxidation current from the electrochemical measurement, which according to the Faraday's Law of coulometry, provides the number of moles of oxidized peptide. The ion intensity ratio of the target peptide before and after oxidation provides an excellent estimate of the fraction of the peptide that has been oxidized, from which the total amount of peptide is calculated. The striking strength of CMS is that it needs no standard peptide, but CMS does require the peptide to contain a known number of oxidizable groups. To illustrate the power of this method, we analyzed various tyrosine-containing peptides such as GGYR, DRVY, oxytocin, [Arg8]-vasotocin and angiotensinogen 1-14 with a quantification error ranging from - 7.5 to + 2.4%. This approach is also applicable to quantifying phosphopeptides and could be useful in proteomics research.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
14
|
Xu C, Zheng Q, Zhao P, Paterson J, Chen H. A New Quantification Method Using Electrochemical Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:685-693. [PMID: 30604392 DOI: 10.1007/s13361-018-2116-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Mass spectrometry-based quantification method has advanced rapidly. In general, the methods for accurate quantification rely on the use of authentic target compounds or isotope-labeled compounds as standards, which might be not available or difficult to synthesize. To tackle this grand challenge, this paper presents a novel approach, based on electrochemistry (EC) combined with mass spectrometry (MS). In this approach, a target compound is allowed to undergo electrochemical oxidation and then subject to MS analysis. The oxidation current recorded from electrochemistry (EC) measurement provides information about the amount of the oxidized analyte, based on the Faraday's Law. On the other hand, the oxidation reaction yield can be determined from the analyte MS signal changes upon electrolysis. Therefore, the total amount of analyte can be determined. In combination with liquid chromatography (LC), the method can be applicable to mixture analysis. The striking strength of such a method for quantitation is that neither standard compound nor calibration curve is required. Various analyte molecules such as dopamine, norepinephrine, and rutin as well as peptide glutathione in low quantity were successfully quantified using our method with the quantification error ranging from - 2.6 to + 4.6%. Analyte in a complicated matrix (e.g., uric acid in urine) was also accurately measured. Graphical Abstract.
Collapse
Affiliation(s)
- Chang Xu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Pengyi Zhao
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Joseph Paterson
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA.
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
15
|
Narayanan R, Basuri P, Jana SK, Mahendranath A, Bose S, Pradeep T. In situ monitoring of electrochemical reactions through CNT-assisted paper cell mass spectrometry. Analyst 2019; 144:5404-5412. [DOI: 10.1039/c9an00791a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel method of coupling electrochemistry (EC) with mass spectrometry (MS) is illustrated with a paper-based electrochemical cell supported by carbon nanotubes (CNTs).
Collapse
Affiliation(s)
- Rahul Narayanan
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Pallab Basuri
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sourav Kanti Jana
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ananthu Mahendranath
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sandeep Bose
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
16
|
Xu S, Zhang Y, Xu L, Bai Y, Liu H. Online coupling techniques in ambient mass spectrometry. Analyst 2018; 141:5913-5921. [PMID: 27704091 DOI: 10.1039/c6an01705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since ambient mass spectrometry (AMS) has been proven to have low matrix effects and high salt tolerance, great efforts have been made for online coupling of several analytical techniques with AMS. These analytical techniques include gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), surface plasmon resonance (SPR), and electrochemistry flow cells. Various ambient ionization sources, represented by desorption electrospray ionization (DESI) and direct analysis in real time (DART), have been utilized as interfaces for the online coupling techniques. Herein, we summarized the advances in these online coupling methods. Close attention has been paid to different interface setups for coupling, as well as limits of detection, tolerance to different matrices, and applications of these new coupling techniques.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| |
Collapse
|
17
|
Yu K, Zhang H, He J, Zare RN, Wang Y, Li L, Li N, Zhang D, Jiang J. In Situ Mass Spectrometric Screening and Studying of the Fleeting Chain Propagation of Aniline. Anal Chem 2018; 90:7154-7157. [PMID: 29873225 DOI: 10.1021/acs.analchem.8b02498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple and effective approach to studying the mechanism of electrooxidation of aniline (ANI) is reported in this paper. It was accomplished by an innovative electrochemistry (EC)-mass spectrometry (MS) coupling, which can sample directly from a droplet-scale reacting electrolyte for mass spectrometric analysis. With this setup, the polymer chain growth of ANI could be monitored in situ and in real-time. The short-lived radical cations (ANI•+, m/ z 93.06) as well as the soluble dimer ( m/ z 183.09) and oligomers ( m/ z 274.13, 365.18, ...) were successfully captured. Using the EC-MS and tandem mass spectrometry, the dimers produced by head-to-tail (4-aminodiphenylamine), head-to-head (hydrazobenzene), and tail-to-tail (benzidine) coupling of radical cations were found in the same polymerization process. Moreover, the EC-MS method was also applicable for determining the propagation speed of ANI when applying different electrolyte salts and oxidizing potentials.
Collapse
Affiliation(s)
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , Heilongjiang 150040 , P.R. China
| | | | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | | | - Ling Li
- Biological & Chemical Engineering Department , Weihai Vocational College , Weihai , Shandong 264210 , P.R. China
| | | | | | | |
Collapse
|
18
|
Liquid-inlet online electrochemical mass spectrometry for the in operando monitoring of direct ethanol fuel cells. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Cai Y, Wang J, Zhang Y, Li Z, Hu D, Zheng N, Chen H. Detection of Fleeting Amine Radical Cations and Elucidation of Chain Processes in Visible-Light-Mediated [3 + 2] Annulation by Online Mass Spectrometric Techniques. J Am Chem Soc 2017; 139:12259-12266. [PMID: 28786686 DOI: 10.1021/jacs.7b06319] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light-mediated photoredox reactions have recently emerged as a powerful means for organic synthesis and thus have generated significant interest from the organic chemistry community. Although the mechanisms of these reactions have been probed by a number of techniques such as NMR, fluorescence quenching, and laser flash photolysis and various degrees of success has been achieved, mechanistic ambiguity still exists (for instance, the involvement of the chain mechanism is still under debate) because of the lack of structural information about the proposed and short-lived intermediates. Herein, we present the detection of transient amine radical cations involved in the intermolecular [3 + 2] annulation reaction of N-cyclopropylaniline (CPA, 1) and styrene 2 by electrospray ionization mass spectrometry (ESI-MS) in combination with online laser irradiation of the reaction mixture. In particular, the reactive CPA radical cation 1+•, the reduced photocatalyst Ru(I)(bpz)3+, and the [3 + 2] annulation product radical cation 3+• are all successfully detected and confirmed by high-resolution MS. More importantly, the post-irradiation reaction with an additional substrate, isotope-labeled CPA, following photolysis of 1, 2, and Ru catalyst provides strong evidence to support the chain mechanism in the [3 + 2] annulation reaction. Furthermore, the key step of the proposed chain reaction, the oxidation of CPA 1 to amine radical cation 1+• by product radical cation 3+• (generated using online electrochemical oxidation of 3), is successfully established. Additionally, the coupling of ESI-MS with online laser irradiation has been successfully applied to probe the photostability of photocatalysts.
Collapse
Affiliation(s)
- Yi Cai
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Jiang Wang
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - David Hu
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| |
Collapse
|
20
|
Cheng H, Yan X, Zare RN. Two New Devices for Identifying Electrochemical Reaction Intermediates with Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:3191-3198. [DOI: 10.1021/acs.analchem.6b05124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heyong Cheng
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- College
of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xin Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
21
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
22
|
Saha-Shah A, Green CM, Abraham DH, Baker LA. Segmented flow sampling with push-pull theta pipettes. Analyst 2017; 141:1958-65. [PMID: 26907673 DOI: 10.1039/c6an00028b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report development of a mobile and easy-to-fabricate theta pipette microfluidic device for segmented flow sampling. The theta pipettes were also used as electrospray emitters for analysis of sub-nanoliter segments, which resulted in delivery of analyte to the vacuum inlet of the mass spectrometer without multiple transfer steps. Theta pipette probes enable sample collection with high spatial resolution due to micron or smaller sized probe inlets and can be used to manipulate aqueous segments in the range of 200 pL to tens of nanoliters. Optimized conditions can enable sampling with high spatial and temporal resolution, suitable for chemical monitoring in biological samples and studies of sample heterogeneity. Intercellular heterogeneity among Allium cepa cells was studied by collecting cytoplasm from multiple cells using a single probe. Extracted cytoplasm was analyzed in a fast and high throughput manner by direct electrospray mass spectrometry of segmented sample from the probe tip.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Curtis M Green
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - David H Abraham
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
23
|
Lu J, Hua X, Long YT. Recent advances in real-time and in situ analysis of an electrode–electrolyte interface by mass spectrometry. Analyst 2017; 142:691-699. [DOI: 10.1039/c6an02757a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Novelty: Recent advances in real-time and in situ monitoring of an electrode–electrolyte interface by mass spectrometry are reviewed.
Collapse
Affiliation(s)
- Jusheng Lu
- School of Chemistry and Chemical Engineering
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Xin Hua
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
24
|
Dual reductive/oxidative electrochemistry/liquid chromatography/mass spectrometry: Towards peptide and protein modification, separation and identification. J Chromatogr A 2017; 1479:153-160. [DOI: 10.1016/j.chroma.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023]
|
25
|
Looi WD, Chamand L, Brown B, Brajter-Toth A. Role of Electrochemistry in Desorption Ionization Mass Spectrometry (LS DESI MS) of Aqueous Samples Containing Electrolyte Salts. Anal Chem 2016; 89:603-610. [DOI: 10.1021/acs.analchem.6b02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen Donq Looi
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Laura Chamand
- Faculty
of Chemistry, University of Strasbourg, 1 Rue Blasie Pascal, 67008 Strasbourg, France
| | - Blake Brown
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Anna Brajter-Toth
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
26
|
Zheng Q, Chen H. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:411-448. [PMID: 27145689 DOI: 10.1146/annurev-anchem-071015-041620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| |
Collapse
|
27
|
Liu H, Lei QP, Washabaugh M. Characterization of IgG2 Disulfide Bonds with LC/MS/MS and Postcolumn Online Reduction. Anal Chem 2016; 88:5080-7. [DOI: 10.1021/acs.analchem.5b04368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongji Liu
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Qing Paula Lei
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael Washabaugh
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
28
|
Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). Anal Bioanal Chem 2016; 408:2227-38. [DOI: 10.1007/s00216-015-9246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
29
|
Cramer CN, Haselmann KF, Olsen JV, Nielsen PK. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. Anal Chem 2016; 88:1585-92. [DOI: 10.1021/acs.analchem.5b03148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christian N. Cramer
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim F. Haselmann
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper V. Olsen
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | |
Collapse
|
30
|
Switzar L, Nicolardi S, Rutten JW, Oberstein SAJL, Aartsma-Rus A, van der Burgt YEM. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:50-8. [PMID: 26369777 PMCID: PMC4686567 DOI: 10.1007/s13361-015-1258-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 05/04/2023]
Abstract
Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.
Collapse
Affiliation(s)
- Linda Switzar
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- , Albinusdreef 2, Postzone S3, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Julie W Rutten
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
31
|
Cheng S, Wang J, Cai Y, Loo JA, Chen H. Enhancing Performance of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry Using Trap and Capillary Columns. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 392:73-79. [PMID: 27239159 PMCID: PMC4878830 DOI: 10.1016/j.ijms.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent and important advance in the field that has extensive applications in surface analysis of solid samples but has also been extended to analysis of liquid samples. The liquid sample DESI typically employs a piece of fused silica capillary to transfer liquid sample for ionization. In this study, we present the improvement of liquid sample DESI-MS by replacing the sample transfer silica capillary with a trap column filled with chromatographic stationary phase materials (e.g., C4, C18). This type of trap column/liquid sample DESI can be used for trace analysis of organics and biomolecules such as proteins/peptides (in nM concentration) in high salt content matrices. Furthermore, when the sample transfer capillary is modified with enzyme covalently bound on its inside capillary wall, fast digestion (< 6 min) of proteins such as phosphoproteins can be achieved and the online digested proteins can be directly ionized using DESI with high sensitivity. The latter is ascribed to the freedom to select favorable spray solvent for the DESI analysis. Our data shows that liquid sample DESI-MS with a modified sample transfer capillary has significantly expanded its utility in bioanalysis.
Collapse
Affiliation(s)
- Si Cheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jun Wang
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA ; Department of forensic science, Jiangsu Police Institute, Nanjing, Jiang Su, 210031, China
| | - Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine at UCLA, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
32
|
Liu YM, Perry RH. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1702-1712. [PMID: 26311335 DOI: 10.1007/s13361-015-1224-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.
Collapse
Affiliation(s)
- Yao-Min Liu
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Richard H Perry
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
33
|
Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1676-1685. [PMID: 26242804 DOI: 10.1007/s13361-015-1210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yong Liu
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA.
| | - Roy Helmy
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
34
|
Büter L, Faber H, Wigger T, Vogel M, Karst U. Differential Protein Labeling Based on Electrochemically Generated Reactive Intermediates. Anal Chem 2015; 87:9931-8. [DOI: 10.1021/acs.analchem.5b02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lars Büter
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Helene Faber
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Tina Wigger
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Martin Vogel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
35
|
|
36
|
|
37
|
Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Brown TA, Chen H, Zare RN. Identification of Fleeting Electrochemical Reaction Intermediates Using Desorption Electrospray Ionization Mass Spectrometry. J Am Chem Soc 2015; 137:7274-7. [DOI: 10.1021/jacs.5b03862] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Timothy A. Brown
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701-2979, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
39
|
Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. MASS SPECTROMETRY REVIEWS 2015; 34:64-92. [PMID: 24338642 PMCID: PMC4286209 DOI: 10.1002/mas.21409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sabine Plattner
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|
40
|
Cai Y, Zheng Q, Liu Y, Helmy R, Loo JA, Chen H. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:341-51. [PMID: 26307715 PMCID: PMC4552337 DOI: 10.1255/ejms.1318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.
Collapse
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| | - Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| | - Yong Liu
- Department of Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Roy Helmy
- Department of Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Joseph A Loo
- Dep artment of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine at UCLA, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| |
Collapse
|
41
|
V. Shumyantseva V, V. Suprun E, V. Bulko T, I. Archakov A. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron 2014; 61:131-9. [DOI: 10.1016/j.bios.2014.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/04/2023]
|
42
|
Zheng Q, Zhang H, Tong L, Wu S, Chen H. Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal Chem 2014; 86:8983-91. [PMID: 25141260 PMCID: PMC4165463 DOI: 10.1021/ac501526n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Zhang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lingying Tong
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Shiyong Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
43
|
Li L, Schug KA. Continuous-flow extractive desorption electrospray ionization coupled to normal phase separations and for direct lipid analysis from cell extracts. J Sep Sci 2014; 37:2357-63. [DOI: 10.1002/jssc.201400361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Li Li
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
44
|
Espy RD, Wleklinski M, Yan X, Cooks RG. Beyond the flask: Reactions on the fly in ambient mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Cai Y, Adams D, Chen H. A new splitting method for both analytical and preparative LC/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:286-92. [PMID: 24254577 DOI: 10.1007/s13361-013-0763-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/28/2013] [Indexed: 05/28/2023]
Abstract
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min. Figure ᅟ
Collapse
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | | | | |
Collapse
|
46
|
Looi DW, Iftikhar I, Brajter-Toth A. Electrochemical Attributes of Electrochemistry in Tandem with Electrospray Mass Spectrometry. ELECTROANAL 2014. [DOI: 10.1002/elan.201300426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Mysling S, Salbo R, Ploug M, Jørgensen TJD. Electrochemical Reduction of Disulfide-Containing Proteins for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Anal Chem 2013; 86:340-5. [DOI: 10.1021/ac403269a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Simon Mysling
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Rune Salbo
- Protein
Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv DK-2760, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet and Biotech Research
and Innovation Centre (BRIC), Copenhagen
Biocenter, Ole Maaløes Vej 5, Copenhagen N, DK-2200 Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
48
|
Liu P, Zhang J, Ferguson CN, Chen H, Loo JA. Measuring protein-ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:11966-72. [PMID: 24237005 PMCID: PMC3901310 DOI: 10.1021/ac402906d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have previously shown that liquid sample desorption electrospray ionization-mass spectrometry (DESI-MS) is able to measure large proteins and noncovalently bound protein complexes (to 150 kDa) (Ferguson et al., Anal. Chem. 2011, 83, 6468-6473). In this study, we further investigate the application of liquid sample DESI-MS to probe protein-ligand interactions. Liquid sample DESI allows the direct formation of intact protein-ligand complex ions by spraying ligands toward separate protein sample solutions. This type of "reactive" DESI methodology can provide rapid information on binding stiochiometry, selectivity, and kinetics, as demonstrated by the binding of ribonuclease A (RNaseA, 13.7 kDa) with cytidine nucleotide ligands and the binding of lysozyme (14.3 kDa) with acetyl chitose ligands. A higher throughput method for ligand screening by liquid sample DESI was demonstrated, in which different ligands were sequentially injected as a segmented flow for DESI ionization. Furthermore, supercharging to enhance analyte charge can be integrated with liquid sample DESI-MS, without interfering with the formation of protein-ligand complexes.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Carly N. Ferguson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Pan N, Liu P, Cui W, Tang B, Shi J, Chen H. Highly efficient ionization of phosphopeptides at low pH by desorption electrospray ionization mass spectrometry. Analyst 2013; 138:1321-1324. [PMID: 23338759 DOI: 10.1039/c3an36737a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fast and novel strategy for efficient ionization of phosphopeptides in mixtures is reported, in which the sample is acidified to low pH to suppress the deprotonation of phosphate groups and then followed by direct analysis using liquid sample desorption electrospray ionization mass spectrometry (DESI-MS).
Collapse
Affiliation(s)
- Ning Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China, 250014.,Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA 45701
| | - Pengyuan Liu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA 45701
| | - Weidong Cui
- Department of Chemistry, Washington University, St. Louis, MO, USA 63130
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China, 250014
| | - Jingmin Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China, 250014
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA 45701
| |
Collapse
|
50
|
Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst 2013; 138:5519-39. [DOI: 10.1039/c3an00709j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|