1
|
Handore KL, Lu H, Park H, Xiong Q, Batey RA. Synthesis of N-Hydroxysuccinimide Esters, N-Acylsaccharins, and Activated Esters from Carboxylic Acids Using I 2/PPh 3. J Org Chem 2024. [PMID: 38805361 DOI: 10.1021/acs.joc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A method for the syntheses of isolable, active esters is described in which carboxylic acids are treated with triphenylphosphine, iodine, and triethylamine. Active esters accessible in this way include N-hydroxysuccinimide esters, N-hydroxyphthalimide esters (N-(acyloxy)phthalimides), N-acylsaccharins, pentafluorophenol esters, pentachlorophenol esters, N-hydroxybenzotriazole esters, and hexafluoro-2-propanol esters. The approach can be similarly applied toward the formation of N-acylsaccharins and N-acylimidazoles. The method is suitable for the formation of isolable active esters of aromatic and aliphatic activated acids as well as α-amino acid derivatives. These products are widely used reagents in organic synthesis, peptide synthesis, medicinal chemistry, and chemical biology (e.g., for bioconjugations). The method has broad substrate scope, uses simple and inexpensive reagents, avoids the use of carbodiimides or other coupling agents, and occurs at room temperature. Additionally, the diastereomers of compound Boc-Ala-NHCHPh are demonstrated to be distinguishable by 1H NMR (in DMSO-d6), allowing for a straightforward NMR method to establish the degree of racemization of activated esters of Boc-Ala or amide bond formations using Boc-Ala.
Collapse
Affiliation(s)
- Kishor L Handore
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Heyuan Lu
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hyeongbin Park
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Qingyu Xiong
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
3
|
Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Datinská V, Klepárník K, Belšánová B, Minárik M, Foret F. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer. J Sep Sci 2018; 41:2961-2968. [PMID: 29742317 DOI: 10.1002/jssc.201800248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
Abstract
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Collapse
Affiliation(s)
- Vladimíra Datinská
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| | - Barbora Belšánová
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic
| | - Marek Minárik
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| |
Collapse
|
6
|
Hu J, Liu MH, Zhang CY. Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci 2018; 9:4258-4267. [PMID: 29780556 PMCID: PMC5944210 DOI: 10.1039/c8sc00832a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
The integration of quantum dot-based fluorescence resonance energy transfer with rolling circle amplification enables simultaneous sensitive detection of multiple microRNAs.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate important physiological processes, and their dysregulation is associated with various human diseases. Simultaneous sensitive detection of multiple miRNAs may facilitate early clinical diagnosis. In this research, we demonstrate for the first time the integration of hyperbranched rolling circle amplification (HRCA) with quantum dot (QD)-based fluorescence resonance energy transfer (FRET) for the simultaneous detection of multiple microRNAs with a single-color QD as the donor and two fluorescent dyes as the acceptors. We used miR-21 and miR-221 as target miRNAs. We designed two circular templates which may specifically hybridize with miR-21 and miR-221, respectively, for the initiation of the HRCA reaction. The products of the HRCA reaction may hybridize with both capture probes and reporter probes to form the biotinylated acceptor-labeled sandwich hybrids. The resultant sandwich hybrids can assemble on the surface of the QD, enabling efficient FRET between the QD and the acceptors, with the Cy3 signal indicating the presence of miR-21 and the Texas Red signal indicating the presence of miR-221. This assay has significant advantages of simplicity and low cost. The HRCA reaction can be performed under isothermal conditions with the same reverse primer for different target miRNAs, and the products of the HRCA reaction for both miR-21 and miR-221 can specifically hybridize with the same capture probes. This assay exhibits excellent specificity and high sensitivity with a detection limit of 7.2 × 10–16 M for miR-21 and 1.6 × 10–17 M for miR-221, and it can be used for simultaneous detection of multiple miRNAs in human cancer cells, holding great potential in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| |
Collapse
|
7
|
Han Y, Noor MO, Sedighi A, Uddayasankar U, Doughan S, Krull UJ. Inorganic Nanoparticles as Donors in Resonance Energy Transfer for Solid-Phase Bioassays and Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12839-12858. [PMID: 28759726 DOI: 10.1021/acs.langmuir.7b01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioassays for the rapid detection and quantification of specific nucleic acids, proteins, and peptides are fundamental tools in many clinical settings. Traditional optical emission methods have focused on the use of molecular dyes as labels to track selective binding interactions and as probes that are sensitive to environmental changes. Such dyes can offer good detection limits based on brightness but typically have broad emission bands and suffer from time-dependent photobleaching. Inorganic nanoparticles such as quantum dots and upconversion nanoparticles are photostable over prolonged exposure to excitation radiation and tend to offer narrow emission bands, providing a greater opportunity for multiwavelength multiplexing. Importantly, in contrast to molecular dyes, nanoparticles offer substantial surface area and can serve as platforms to carry a large number of conjugated molecules. The surface chemistry of inorganic nanoparticles offers both challenges and opportunities for the control of solubility and functionality for selective molecular interactions by the assembly of coatings through coordination chemistry. This report reviews advances in the compositional design and methods of conjugation of inorganic quantum dots and upconversion nanoparticles and the assembly of combinations of nanoparticles to achieve energy exchange. Our interest is the exploration of configurations where the modified nanoparticles can be immobilized to solid substrates for the development of bioassays and biosensors that operate by resonance energy transfer (RET).
Collapse
Affiliation(s)
- Yi Han
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Abootaleb Sedighi
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Uvaraj Uddayasankar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Samer Doughan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
8
|
Oćwieja M, Matras-Postołek K, Maciejewska-Prończuk J, Morga M, Adamczyk Z, Sovinska S, Żaba A, Gajewska M, Król T, Cupiał K, Bredol M. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements. J Colloid Interface Sci 2017; 503:186-197. [PMID: 28525826 DOI: 10.1016/j.jcis.2017.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10-4 and 10-2M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10-4 and 10-2M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Katarzyna Matras-Postołek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland.
| | - Julia Maciejewska-Prończuk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Svitlana Sovinska
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Adam Żaba
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Marta Gajewska
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Tomasz Król
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Klaudia Cupiał
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Michael Bredol
- Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48-565 Steinfurt, Germany
| |
Collapse
|
9
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
10
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
12
|
Abstract
At this post-genomic era, the focus of life science research has shifted from life genetic information to general biofunctions. Biomolecular sensors based on QDs will play an important role in the identification and detection of biomolecules.
Collapse
Affiliation(s)
| | - Jinzhi Lv
- Shanxi Normal University
- Linfen 041004
- PR China
| | - Yan Li
- Shanxi Normal University
- Linfen 041004
- PR China
| | - Guiqin Yan
- Shanxi Normal University
- Linfen 041004
- PR China
| |
Collapse
|
13
|
Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 2015; 74:562-74. [DOI: 10.1016/j.bios.2015.06.076] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
|
14
|
Wu P, Hou X, Xu JJ, Chen HY. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem Rev 2014; 114:11027-59. [DOI: 10.1021/cr400710z] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
15
|
Noor MO, Krull UJ. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 2014; 86:10331-9. [PMID: 25225960 DOI: 10.1021/ac502677n] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an important framework for the integration of QD-FRET methods with digital imaging for a ratiometric transduction of nucleic acid hybridization on a paper-based platform.
Collapse
Affiliation(s)
- M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | | |
Collapse
|
16
|
Zhang S, Han G, Xing Z, Zhang S, Zhang X. Multiplex DNA Assay Based on Nanoparticle Probes by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2014; 86:3541-7. [DOI: 10.1021/ac404245z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shixi Zhang
- Beijing
Key Laboratory for
Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guojun Han
- Beijing
Key Laboratory for
Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi Xing
- Beijing
Key Laboratory for
Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sichun Zhang
- Beijing
Key Laboratory for
Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Beijing
Key Laboratory for
Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Li J, Qi H, Wang H, Yang Z, Zhu P, Diao G. Fluorescence energy transfer-based multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on photonic crystal beads. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1217-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Noor MO, Petryayeva E, Tavares AJ, Uddayasankar U, Algar WR, Krull UJ. Building from the “Ground” Up: Developing interfacial chemistry for solid-phase nucleic acid hybridization assays based on quantum dots and fluorescence resonance energy transfer. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Zhou F, Noor MO, Krull UJ. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Anal Chem 2014; 86:2719-26. [DOI: 10.1021/ac404129t] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Feng Zhou
- Chemical
Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - M. Omair Noor
- Chemical
Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical
Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
20
|
Liu J, Yang X, Wang K, Wang Q, Liu W, Wang D. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes. NANOSCALE 2013; 5:11257-11264. [PMID: 24089289 DOI: 10.1039/c3nr03291d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.
Collapse
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Noor MO, Krull UJ. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 2013; 85:7502-11. [PMID: 23837820 DOI: 10.1021/ac401471n] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.
Collapse
Affiliation(s)
- M Omair Noor
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | | |
Collapse
|
22
|
On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chim Acta 2013; 788:148-57. [DOI: 10.1016/j.aca.2013.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/02/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022]
|
23
|
Petryayeva E, Algar WR, Krull UJ. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:977-987. [PMID: 23298406 DOI: 10.1021/la304287v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Methods have been developed for the solid-phase detection of nucleic acids using mixed films of quantum dots (QDs) and oligonucleotide probes in microtiter plates. Polystyrene microwells were functionalized with multidentate imidazole ligands to immobilize QDs. Oligonucleotide hybridization was transduced using QDs as donors in fluorescence resonance energy transfer (FRET). One detection channel paired green-emitting QD donors with Cy3 acceptors and served as an internal standard. A second detection channel paired red-emitting QDs with Alexa Fluor 647 acceptors and served as the primary detection channel. A selective assay for multiple targets was demonstrated using a 96-well plate format, which combined the advantages of two-plex QD-FRET with the high-throughput capability and convenience of microtiter plates. The assay had excellent resistance to the nonspecific adsorption of DNA and discriminated between fully complementary and single base-pair mismatched sequences with a contrast ratio >2. Under optimal conditions for a single color (green QD) assay format, the limit of detection (LOD) was 4 nM, and the dynamic range was from 20 to 300 nM. In a two-color assay, the detection channel (red QD) exhibited linear response between 4 and 100 nM and a LOD of 4 nM.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
24
|
Noor MO, Shahmuradyan A, Krull UJ. Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Anal Chem 2013; 85:1860-7. [DOI: 10.1021/ac3032383] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Omair Noor
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Anna Shahmuradyan
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| |
Collapse
|
25
|
Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. SENSORS 2012; 12:16660-72. [PMID: 23211753 PMCID: PMC3571803 DOI: 10.3390/s121216660] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/23/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.
Collapse
|
26
|
Vannoy CH, Chong L, Le C, Krull UJ. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Anal Chim Acta 2012; 759:92-9. [PMID: 23260681 DOI: 10.1016/j.aca.2012.10.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/21/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022]
Abstract
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD(605)) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD-DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.
Collapse
Affiliation(s)
- Charles H Vannoy
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | |
Collapse
|
27
|
Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal Chem 2012; 84:10136-46. [PMID: 23128345 DOI: 10.1021/ac3028068] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Semiconductor quantum dots (QDs) are attractive probes for optical sensing and imaging due to their unique photophysical attributes and nanoscale size. In particular, the development of assays and biosensors based on QDs and Förster resonance energy transfer (FRET) continues to be a prominent focus of research. Here, we demonstrate the application of QDs as simultaneous donors and acceptors in a time-gated FRET relay for the multiplexed detection of protease activity. In contrast to the current state-of-the-art, which uses multiple colors of QDs, multiplexing was achieved using only a single color of QD. The other constituents of the FRET relay, a luminescent terbium complex and fluorescent dye, were assembled to QDs via peptides that were selected as substrates for the model proteases trypsin and chymotrypsin. Loss of prompt FRET between the QD and dye signaled the activity of chymotrypsin; loss of time-gated FRET between the terbium and QD signaled the activity of trypsin. We applied the FRET relay in a series of quantitative, real-time kinetic assays of increasing biochemical complexity, including multiplexed sensing, measuring inhibition in a multiplexed format, and tracking the proteolytic activation of an inactive pro-protease to its active form in a coupled, multienzyme system. These capabilities were derived from a ratiometric analysis of the two FRET pathways in the relay and permitted extraction of initial reaction rates, enzyme specificity constants, and apparent inhibition constants. This work adds to the growing body of research on multifunctional nanoparticles and introduces multiplexed sensing as a novel capability for a single nanoparticle vector. Furthermore, the ability to track both enzymes within a coupled biological system using one vector represents a significant advancement for nanoparticle-based biosensing. Prospective applications in biochemical research, applied diagnostics, and drug discovery are discussed.
Collapse
Affiliation(s)
- W Russ Algar
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States.
| | | | | | | | | | | |
Collapse
|
28
|
Chen Y, Wang L, Jiang W. Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA. Talanta 2012; 97:533-8. [DOI: 10.1016/j.talanta.2012.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 11/29/2022]
|
29
|
Tavares AJ, Noor MO, Vannoy CH, Algar WR, Krull UJ. On-Chip Transduction of Nucleic Acid Hybridization Using Spatial Profiles of Immobilized Quantum Dots and Fluorescence Resonance Energy Transfer. Anal Chem 2011; 84:312-9. [DOI: 10.1021/ac2025943] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anthony J. Tavares
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - M. Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Charles H. Vannoy
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - W. Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
30
|
Hu B, Zhang LP, Chen ML, Chen ML, Wang JH. The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay. Biosens Bioelectron 2011; 32:82-8. [PMID: 22192453 DOI: 10.1016/j.bios.2011.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
Fluorescence resonance energy transfer (FRET) between two quantum dots of different sizes causes fluorescence quenching. Hereby a binding site pre-blocking approach is proposed to avoid this effect. Pre-binding of glucose on the donor occupies the binding sites and thus blocks resonance energy transfer between the two quantum dots, protecting the fluorescence from being quenched. A glucose assay is developed based on this approach. The glucose content is correlated with the fluorescence difference in the absence and in the presence of glucose. In practice, Green QDs-Con A conjugates are used as donors and Red QDs-NH(2)-glu conjugates as acceptors to form FRET system. The inhibition of fluorescence quenching is then measured in the presence of glucose. A linear calibration graph is achieved within 0.1-2.0 mmolL(-1), along with a detection limit of 0.03 mmolL(-1) and a RSD of 2.1% (1.0 mmolL(-1)). 91-105% of glucose in serum and urine samples is recovered. It is worth mentioning that the present glucose assay approach also generates a fluorescence chromatic difference imaging, and the color display clearly identifies the glucose contents by visual detection with a distinguishing ability of ca. 0.5 mmolL(-1). The present approach can potentially be used for the clinical determination of glucose in biological samples which can be further developed into a glucose sensor.
Collapse
Affiliation(s)
- Bo Hu
- Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | | | | | | | | |
Collapse
|
31
|
Zhiguo G, Shuping Y, Zaijun L, Xiulan S, Guangli W, Yinjun F, Junkang L. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core–shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.07.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Algar WR, Krull UJ. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer. SENSORS (BASEL, SWITZERLAND) 2011; 11:6214-36. [PMID: 22163951 PMCID: PMC3231443 DOI: 10.3390/s110606214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/26/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.
Collapse
Affiliation(s)
- W. Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| |
Collapse
|
33
|
Algar WR, Krull UJ. Characterization of the adsorption of oligonucleotides on mercaptopropionic acid-coated CdSe/ZnS quantum dots using fluorescence resonance energy transfer. J Colloid Interface Sci 2011; 359:148-54. [PMID: 21486671 DOI: 10.1016/j.jcis.2011.03.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 01/10/2023]
Abstract
Semiconductor quantum dots (QDs) coated with thioalkyl acid ligands are often used as probes and reporters for nucleic acid sensing, or protein sensing using aptamers, and are also potential vectors for gene delivery. In such applications, the interactions that potentially lead to the adsorption of oligonucleotides onto the surface of colloidal QDs are an important consideration. To explore such interactions, fluorescence resonance energy transfer (FRET) between QDs and oligonucleotides labeled with a fluorescent dye was used to identify and characterize a set of conditions that favor strong adsorption on 3-mercaptopropionic acid (MPA)-coated CdSe/ZnS QDs. Adsorption curves and competitive binding experiments were used to determine that the order of affinity for nucleobase adsorption was dC>dA≥dG≫dT. The length of the oligonucleotide sequence was also important, with an 80-mer sequence adsorbing more strongly than its 20-mer analog. Adsorption decreased with increasing pH and corresponded to the ionization of the carboxylic acid groups of the MPA ligands. Increased ionic strength partially offsets ligand ionization and increased the extent of adsorption. The interaction between QDs and oligonucleotides was labile, with increases in adsorption at lower concentrations of oligonucleotide and with an increasing number of oligonucleotides per QD. The results were consistent with a hydrogen-bonding model for adsorption, where neutral thioalkyl acid ligands interact favorably with nucleobases and ionized ligands resist adsorption.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
34
|
Detection of Staphylococcus aureus carrying the gene for toxic shock syndrome toxin 1 by quantum-dot-probe complexes. J Fluoresc 2011; 21:1525-30. [PMID: 21274603 DOI: 10.1007/s10895-011-0840-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/10/2011] [Indexed: 01/05/2023]
Abstract
In this study, a high-sensitive and high-specific method to detect the toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus was developed based on quantum dot (QD) and oligonucleotide probe complexes. S. aureus carrying tst gene which is responsible for the production of TSST-1 were detected based on fluorescence resonance energy transfer (FRET) occurring between CdSe/ZnS QD donors and black hole quencher (BHQ) acceptors. QD-DNA probe was prepared by conjugating the carboxyl-modified QD and the amino-modified DNA with the EDC. Photoluminescence (PL) quenching was achieved through FRET after the addition of BHQ-DNA which was attached to tst gene probe by match sequence hybridization. The PL recovery was detected in the presence of target DNA by BHQ-DNA detached from QD-DNA probe because of the different affinities. In contrast, mismatch oligonucleotides and DNAs of other bacteria did not contribute to fluorescence intensity recovery, which exhibits the higher selectivity of the biosensor. The experimental results showed clearly that the intensity of recovered QD PL is linear to the concentration of target DNA within the range of 0.2-1.2 μM and the detection limit was 0.2 μM.
Collapse
|
35
|
Dorokhin D, Hsu SH, Tomczak N, Blum C, Subramaniam V, Huskens J, Reinhoudt DN, Velders AH, Vancso GJ. Visualizing resonance energy transfer in supramolecular surface patterns of β-CD-functionalized quantum dot hosts and organic dye guests by fluorescence lifetime imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2870-2876. [PMID: 21080386 DOI: 10.1002/smll.201000713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Detection of an analyte via supramolecular host-guest binding and quantum dot (QD)-based fluorescence resonance energy transfer (FRET) signal transduction mechanism is demonstrated. Surface patterns consisting of CdSe/ZnS QDs functionalized at their periphery with β-cyclodextrin (β-CD) were obtained by immobilization of the QDs from solution onto glass substrates patterned with adamantyl-terminated poly(propylene imine) dendrimeric "glue." Subsequent formation of host-guest complexes between vacant β-CD on the QD surface and an adamantyl-functionalized lissamine rhodamine resulting in FRET was confirmed by fluorescence microscopy, spectroscopy, and fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Denis Dorokhin
- Materials Science and Technology of Polymers, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen L, Algar WR, Tavares AJ, Krull UJ. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Bioanal Chem 2010; 399:133-41. [PMID: 20978748 DOI: 10.1007/s00216-010-4309-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.
Collapse
Affiliation(s)
- Lu Chen
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | | | | | | |
Collapse
|
37
|
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010; 673:1-25. [DOI: 10.1016/j.aca.2010.05.026] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|
38
|
Abstract
Owing to their unique optical properties, quantum dots (QDs) with different colors have been applied for simultaneous detection of multiple analytes. However, the use of single QD for multiplex detection of analytes with single-molecule detection has not been explored. Here we report a single QD-based nanosensor for multiplex detection of HIV-1 and HIV-2 at single-molecule level in a homogeneous format. In this single QD-based nanosensor, the QD functions not only as a fluorescence pair for coincidence detection and as a fluorescence-resonance-energy-transfer (FRET) donor for FRET detection but also as a local nanoconcentrator which significantly amplifies the coincidence-related fluorescence signals and the FRET signals. This single-QD-based nanosensor takes advantage of a simple 'mix and detection' assay with extremely low sample consumption, high sensitivity, and short analysis time and has the potential to be applied for rapid point-of-care testing, gene expression studies, high-throughput screening, and clinical diagnostics.
Collapse
Affiliation(s)
- Chun-yang Zhang
- Institute of Biomedical Engineering and Health Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | |
Collapse
|
39
|
Wagner MK, Li F, Li J, Li XF, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 2010; 397:3213-24. [DOI: 10.1007/s00216-010-3847-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 02/02/2023]
|
40
|
Algar WR, Krull UJ. New opportunities in multiplexed optical bioanalyses using quantum dots and donor–acceptor interactions. Anal Bioanal Chem 2010; 398:2439-49. [DOI: 10.1007/s00216-010-3837-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/09/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
41
|
Algar WR, Krull UJ. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6041-6047. [PMID: 20000340 DOI: 10.1021/la903751m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methods have been developed for the simultaneous and selective detection of three target nucleic acid sequences based on mixed films of immobilized quantum dots (QDs) and oligonucleotide probes. CdSe/ZnS QDs were immobilized on optical fibers and conjugated with mixtures of different probe oligonucleotides. Hybridization events were detected using a combination of fluorescence from direct excitation and fluorescence sensitized by resonance energy transfer (FRET). A sandwich assay format was used to associate dye labeled reporter oligonucleotides with probe-target hybrids formed at the surface of the optical fiber. One detection channel utilized direct excitation of Pacific Blue and the two other detection channels were based on FRET. In one strategy, green emitting QDs were used as donors with Cy3 and Rhodamine Red-X acceptors. In a second strategy, green and red emitting QDs were coimmobilized and used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Selective three-plex detection was demonstrated with both strategies. Several key design criteria that were explored to optimize the relative signal magnitude between channels included: the ratio of probe associated with direct excitation versus probes associated with FRET; the relative amounts of each FRET probe and corresponding spectral overlap; and the photoluminescence ratio between immobilized green and red emitting QDs (where applicable). Careful selection of probe sequences and lengths were important for the discrimination of single nucleotide polymorphisms in one channel without suppressing binding of target in the other two channels. This work provides a basis for the development of multiplexed biosensors that are ensemble compatible and do not require discrete sensor elements, spatial registration, sorting technology, or single molecule spectroscopy.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, North, Mississauga, Ontario, L5L 1C6, Canada
| | | |
Collapse
|