1
|
Vajhadin F, Mazloum-Ardakani M, Sanati A, Haghniaz R, Travas-Sejdic J. Optical cytosensors for the detection of circulating tumour cells. J Mater Chem B 2022; 10:990-1004. [PMID: 35107117 DOI: 10.1039/d1tb02370e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood analysis is an established approach to monitor various diseases, ranging from heart defects and diabetes to cancer. Among various tumor markers in the blood, circulating tumor cells (CTCs) have received increasing attention due to the fact that they originate directly from the tumors. Capturing and detecting CTCs represents a promising approach in cancer diagnostics and clinical management of cancers. CTCs in blood progress to self-seeding a tumour or initiating a new lesion mass. Cytosensors are biosensors intended to identify CTCs in a blood sample of cancer patients and provide information about the cancer status. Herein, we firstly discuss different detection methods of state-of-the-art optical cytosensors, including colorimetry, fluorescence, surface plasmon resonance, photoelectrochemistry and electrochemiluminescence. Then we review the significant advances made in implementing biorecognition elements and nanomaterials for the detection of cancer cells. Despite great progress in optical cytosensors, and their integration with smartphones, they have still only been explored to prototype stages. Much more effort is needed to fulfil their potential in modern cancer diagnostics and in monitoring the state of disease for cancer patients.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | | | - Alireza Sanati
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Chattopadhyay J, Pathak TS, Pak D. Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts. Molecules 2022; 27:670. [PMID: 35163935 PMCID: PMC8838211 DOI: 10.3390/molecules27030670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, heteroatom-incorporated specially structured metal-free carbon nanomaterials have drawn huge attention among researchers. In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially structured nanomaterials' extensive applications as potential electrocatalysts are taken into consideration in this article. Their comparative enhancement of electrocatalytic performance with incorporation of heteroatoms has also been discussed.
Collapse
Affiliation(s)
| | - Tara Sankar Pathak
- Department of Science and Humanities, Surendra Institute of Engineering and Management, Siliguri, Darjeeling 734009, India;
| | - Daewon Pak
- Department of Environmental Engineering, Seoul National University of Science and Technology, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
3
|
Zhang R, You Q, Cheng M, Ge M, Mei Q, Yang L, Dong WF, Chang Z. Multifunctional Gold Nano-Cytosensor With Quick Capture, Electrochemical Detection, and Non-Invasive Release of Circulating Tumor Cells for Early Cancer Treatment. Front Bioeng Biotechnol 2021; 9:783661. [PMID: 34858966 PMCID: PMC8632441 DOI: 10.3389/fbioe.2021.783661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Circulating tumor cells (CTCs) are metastatic tumor cells that shed into the blood from solid primary tumors, and their existence significantly increases the risk of metastasis and recurrence. The timely discovery and detection of CTCs are of considerable importance for the early diagnosis and treatment of metastasis. However, the low number of CTCs hinders their detection. In the present study, an ultrasensitive electrochemical cytosensor for specific capture, quantitative detection, and noninvasive release of EpCAM-positive tumor cells was developed. The biosensor was manufactured using gold nanoparticles (AuNPs) to modify the electrode. Three types of AuNPs with controllable sizes and conjugated with a targeting molecule of monoclonal anti-EpCAM antibody were used in this study. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) of the cytosensors were performed to evaluate the cell capture efficiency and performance. The captured 4T1 cells by the AuNPs hindered electron transport efficiency, resulting in increased EIS responses. The cell capture response recorded using EIS or DPV indicated that the optimal AuNPs size should be 17 nm. The cell capture response changed linearly with the concentration range from 8.0 × 10 to 1 × 107 cells/mL, and the limit of detection was 50 cells/mL. After these measurements, glycine-HCl (Gly-HCl) was used as an antibody eluent to destroy the binding between antigen and antibody to release the captured tumor cells without compromising their viability for further clinical research. This protocol realizes rapid detection of CTCs with good stability, acceptable assay precision, significant fabrication reproducibility with a relative standard deviation of 2.09%, and good recovery of cells. Our results indicate that the proposed biosensor is promising for the early monitoring of CTCs and may help customize personalized treatment options.
Collapse
Affiliation(s)
- Rui Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Mingming Cheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Mingfeng Ge
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Li Yang
- College of Life Science and Biotechinology, Mianyang Teachers' College, Mianyang, China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Zhimin Chang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China.,Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, China
| |
Collapse
|
4
|
Electrochemical Cell-Based Sensor for Detection of Food Hazards. MICROMACHINES 2021; 12:mi12070837. [PMID: 34357247 PMCID: PMC8306248 DOI: 10.3390/mi12070837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
People’s health has been threatened by several common food hazards. Thus, it is very important to establish rapid and accurate methods to detect food hazards. In recent years, biosensors have inspired developments because of their specificity and sensitivity, short reaction time, low cost, small size and easy operation. Owing to their high precision and non-destructive characteristics, cell-based electrochemical detection methods can reflect the damage of food hazards to organisms better. In this review, the characteristics of electrochemical cell-based biosensors and their applications in the detection of common hazards in food are reviewed. The strategies of cell immobilization and 3D culture on electrodes are discussed. The current limitations and further development prospects of cell-based electrochemical biosensors are also evaluated.
Collapse
|
5
|
Yang M, Villarreal JC, Ariyasinghe N, Kruithoff R, Ros R, Ros A. Quantitative Approach for Protein Analysis in Small Cell Ensembles by an Integrated Microfluidic Chip with MALDI Mass Spectrometry. Anal Chem 2021; 93:6053-6061. [PMID: 33819014 PMCID: PMC8128341 DOI: 10.1021/acs.analchem.0c04112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence has demonstrated that cells are individually heterogeneous. Advancing the technologies for single-cell analysis will improve our ability to characterize cells, study cell biology, design and screen drugs, and aid cancer diagnosis and treatment. Most current single-cell protein analysis approaches are based on fluorescent antibody-binding technology. However, this technology is limited by high background and cross-talk of multiple tags introduced by fluorescent labels. Stable isotope labels used in mass cytometry can overcome the spectral overlap of fluorophores. Nevertheless, the specificity of each antibody and heavy-metal-tagged antibody combination must be carefully validated to ensure detection of the intended target. Thus, novel single-cell protein analysis methods without using labels are urgently needed. Moreover, the labeling approach targets already known motifs, hampering the discovery of new biomarkers relevant to single-cell population variation. Here, we report a combined microfluidic and matrix-assisted laser desorption and ionization (MALDI) mass spectrometric approach for the analysis of protein biomarkers suitable for small cell ensembles. All necessary steps for cell analysis including cell lysis, protein capture, and digestion as well as MALDI matrix deposition are integrated on a microfluidic chip prior to the downstream MALDI-time-of-flight (TOF) detection. For proof of principle, this combined method is used to assess the amount of Bcl-2, an apoptosis regulator, in metastatic breast cancer cells (MCF-7) by using an isotope-labeled peptide as an internal standard. The proposed approach will eventually provide a new means for proteome studies in small cell ensembles with the potential for single-cell analysis and improve our ability in disease diagnosis, drug discovery, and personalized therapy.
Collapse
Affiliation(s)
- Mian Yang
- Department of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan City, Hubei Province, 430081, P.R.China
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe AZ, 85287-1604, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe AZ, 85287-7401, USA
| | - Nethmi Ariyasinghe
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe AZ, 85287-1504, USA
- Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, Tempe AZ, 85287, USA
| | - Rory Kruithoff
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe AZ, 85287-1504, USA
| | - Robert Ros
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe AZ, 85287-1504, USA
- Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, Tempe AZ, 85287, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe AZ, 85287-1604, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe AZ, 85287-7401, USA
| |
Collapse
|
6
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
7
|
Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosens Bioelectron 2018; 116:100-107. [DOI: 10.1016/j.bios.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
|
8
|
Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sens 2018; 3:174-182. [PMID: 29282979 DOI: 10.1021/acssensors.7b00823] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report a highly sensitive colorimetric sensing strategy for cancer biomarker diagnosis using gold nanoparticles (AuNPs) labeled with biotinylated poly(adenine) ssDNA sequences and streptavidin-horseradish peroxidase for enzymatic signal enhancement. By adopting this DNA-AuNP nanoconjugate sensing strategy, we were able to eliminate the complicated and costly thiol-binding process typically used to modify AuNP surfaces with ssDNA. In addition, different antibodies can be introduced to the AuNP surfaced via electrostatic interactions to provide highly specific recognition sites for biomolecular sensing. Moreover, multiple, simultaneous tests can be rapidly performed with low sample consumption by incorporating these surface-modified AuNPs into a paper-based analytical device that can be read using just a smartphone. As a result of these innovations, we were able to achieve a detection limit of 10 pg/mL for a prostate specific antigen in a test that could be completed in as little as 15 min. These results suggest that the proposed paper platform possesses the capability for sensitive, high-throughput, and on-site prognosis in resource-limited settings.
Collapse
Affiliation(s)
- Jia-Yu Huang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Hong-Ting Lin
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Heng Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Fu Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
9
|
Lu W, Xu R, Zhang X, Shen J, Li C. Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Sugawara K, Kadoya T, Kuramitz H, Mihara Y. Design of carbohydrate/electron-transfer peptides for human histocytic lymphoma cell sensing. Anal Chim Acta 2017; 983:198-205. [PMID: 28811027 DOI: 10.1016/j.aca.2017.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022]
Abstract
A carbohydrate/electro-transfer peptide probe was fabricated to perform cell sensing. The probe consisted of a cello-oligosaccharide that was created by the conjugation of an electron-transfer peptide (Y5C) and a carbohydrate via a Schiff base. An oxidation wave due to a phenolic hydroxyl group was obtained by scanning with a glassy carbon electrode. This cell-sensing system was based on a competitive reaction between carbohydrates on a cell surface and the probe as each reacted to a protein that recognized the carbohydrate. When amounts of the protein and probe were constant, the peak current of the probe was changed as the number of cells increased. A human histocytic lymphoma cell (U937 cell) with carbohydrates such as glucose and N-acetylglucosamine on its surface was selected as the target cell. Wheat germ agglutinin (WGA) binded to both the probe and the carbohydrates on U937 cells, which resulted in a linear peak current of the cellobiose/electron-transfer peptide at concentrations that ranged from 100 to 3500 cells/ml. The values of the cell sensing using this electrochemical method were consistent with those established via ELSIA. The sensitivity of this procedure, however, was two-fold superior to that of ELISA. Consequently, this carbohydrate/electron-transfer peptide could be a powerful tool for cell sensing and searching for carbohydrate chains on a cell surface.
Collapse
Affiliation(s)
| | | | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| | - Yoshihiro Mihara
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo 006-8590, Japan
| |
Collapse
|
11
|
Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. NANOTECHNOLOGY REVIEWS 2017; 6:301-329. [PMID: 29335674 PMCID: PMC5766271 DOI: 10.1515/ntrev-2016-0014] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this review is to cover advances in noble metal nanoparticle (MNP)-based biosensors and to outline the principles and main functions of MNPs in different classes of biosensors according to the transduction methods employed. The important biorecognition elements are enzymes, antibodies, aptamers, DNA sequences, and whole cells. The main readouts are electrochemical (amperometric and voltametric), optical (surface plasmon resonance, colorimetric, chemiluminescence, photoelectrochemical, etc.) and piezoelectric. MNPs have received attention for applications in biosensing due to their fascinating properties. These properties include a large surface area that enhances biorecognizers and receptor immobilization, good ability for reaction catalysis and electron transfer, and good biocompatibility. MNPs can be used alone and in combination with other classes of nanostructures. MNP-based sensors can lead to significant signal amplification, higher sensitivity, and great improvements in the detection and quantification of biomolecules and different ions. Some recent examples of biomolecular sensors using MNPs are given, and the effects of structure, shape, and other physical properties of noble MNPs and nanohybrids in biosensor performance are discussed.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Faculty of Chemistry, Kharazmi University, South Mofatteh Ave, P.O. Box 15719-14911, Tehran, Iran; and Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; and Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, 14588 Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Exp. Way, P.O. Box 14665-354, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; and Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Xin Q, Liu Q, Shah H, Gong JR. Electron spin resonance and fluorescence imaging assisted electrochemical approach for accurate and comprehensive monitoring of cellular hydrogen peroxide dynamics. Analyst 2017; 142:316-325. [DOI: 10.1039/c6an02006b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new analytical system combining electrochemistry, ESR, and fluorescence imaging for accurately and comprehensively measuring the dynamics of cellular H2O2.
Collapse
Affiliation(s)
- Qi Xin
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Qian Liu
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Hameed Shah
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Jian Ru Gong
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
13
|
Liu J, Cui M, Niu L, Zhou H, Zhang S. Enhanced Peroxidase-Like Properties of Graphene-Hemin-Composite Decorated with Au Nanoflowers as Electrochemical Aptamer Biosensor for the Detection of K562 Leukemia Cancer Cells. Chemistry 2016; 22:18001-18008. [DOI: 10.1002/chem.201604354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Meirong Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Shandong Normal University; Jinan 250014 P.R. China
| | - Li Niu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| |
Collapse
|
14
|
Zhang JJ, Cheng FF, Zheng TT, Zhu JJ. Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 2016; 89:937-945. [PMID: 27818049 DOI: 10.1016/j.bios.2016.09.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fang-Fang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; School of Pharmacy, Nanjing University of Chinese Medicine, 210023, China
| | - Ting-Ting Zheng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Zhang J, Cheng F, Li J, Zhu JJ, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. NANO TODAY 2016; 11:309-329. [PMID: 27818705 PMCID: PMC5089816 DOI: 10.1016/j.nantod.2016.05.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in nanoscale science and technology have generated nanomaterials with unique optical properties. Over the past decade, numerous fluorescent nanoprobes have been developed for highly sensitive and selective sensing and imaging of metal ions, both in vitro and in vivo. In this review, we provide an overview of the recent development of the design and optical properties of the different classes of fluorescent nanoprobes based on noble metal nanomaterials, upconversion nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials. We further detail their application in the detection and quantification of metal ions for environmental monitoring, food safety, medical diagnostics, as well as their use in biomedical imaging in living cells and animals.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - FangFang Cheng
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - JingJing Li
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jun-Jie Zhu
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Qian J, Wang K, Wang C, Hua M, Yang Z, Liu Q, Mao H, Wang K. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst 2016; 140:7434-42. [PMID: 26396995 DOI: 10.1039/c5an01403d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A color change observable by the naked eye to indicate the content of an analyte is considered to be the most conceivable way of various sensing protocols. By taking advantage of the Förster resonance energy transfer (FRET) principles, we herein designed a dual-emission ratiometric fluorescent aptasensor for ochratoxin A (OTA) detection via a dual mode of fluorescent sensing and onsite visual screening. Amino group-modified OTA's aptamer was firstly labeled with the green-emitting CdTe quantum dots (gQDs) donor. The red-emitting CdTe QDs (rQDs) which were wrapped in the silica sphere could serve as the reference signal, while the gold nanoparticle (AuNP) acceptors were attached on the silica surface to bind with the thiolated complementary DNA (cDNA). The hybridization reaction between the aptamer and the cDNA brought gQD-AuNP pair close enough, thereby making the FRET occur in the aptasensor fabrication, while the subsequent fluorescence recovery induced by OTA was obtained in the detection procedure. Based on the red background of the wrapped rQDs, the aptasensor in response to increasing OTA displayed a distinguishable color change from red to yellow-green, which could be conveniently readout in solution even by the naked eye. Since the bioconjugations used as the aptasensor can be produced at large scale, this method can be used for in situ, rapid, or high-throughput OTA detection after only an incubation step in a homogeneous mode. We believe that this novel aptasensing strategy provides not only a promising method for OTA detection but also a universal model for detecting diverse targets by changing the corresponding aptamer.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu S, Zou G, Wei Q. Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels. Talanta 2016; 156-157:11-17. [PMID: 27260429 DOI: 10.1016/j.talanta.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
In this paper, an ultrasensitive electrochemical immunosensor was developed for the detection of tumor specific growth factor (TSGF). Reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) was used to modify the surface of glassy carbon electrode (GCE). Meanwhile, Ag@CeO2 nanocomposite was synthesized and applied as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for the reduction of H2O2 was recorded. Simultaneously, electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) were used to characterize the fabrication process of the immunosensor. The anti-TSGF primary antibody (Ab1) was immobilized onto the rGO-TEPA modified GCE via cross-linking with glutaraldehyde (GA). And then the TSGF antigen and Ab2-Ag@CeO2 were modified onto the electrode surface in sequence. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.500-100pg/mL), a low detection limit (0.2pg/mL), good reproducibility, acceptable selectivity and excellent stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.
Collapse
Affiliation(s)
- Siqi Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Qin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
18
|
Han L, Liu P, Petrenko VA, Liu A. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci Rep 2016; 6:22199. [PMID: 26908277 PMCID: PMC4764921 DOI: 10.1038/srep22199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.
Collapse
Affiliation(s)
- Lei Han
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Pei Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 269 Greene Hall, Auburn, Alabama 36849-5519, United States
| | - Aihua Liu
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| |
Collapse
|
19
|
Geng P, Feng C, Zhu L, Zhang J, Wang F, Liu K, Xu Z, Zhang W. Evaluation of Sialic Acid Expression on Cancer Cells via an Electrochemical Assay Based on Biocompatible Au@BSA Architecture and Lectin-modified Nanoprobes. ELECTROANAL 2016. [DOI: 10.1002/elan.201500632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Liu S, Zhang Z, Zhou S, Jiang LP, Zhu JJ. An electrochemical-TUNEL method for sensitive detection of apoptotic cells. Analyst 2016; 141:567-9. [DOI: 10.1039/c5an01780g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electrochemical-TUNEL method based on the fabrication of a CNT@PDA–FA three dimensional bio-interface was developed for cytosensors. By being coupled with a QD-based nanoprobe and electrochemical analysis, the sensor exhibited attractive performance in the detection of apoptotic cells.
Collapse
Affiliation(s)
- Shanhu Liu
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- People's Republic of China
| | - Ziyi Zhang
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- People's Republic of China
| | - Shiwei Zhou
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- People's Republic of China
| |
Collapse
|
21
|
Zhang X, Huang C, Jiang Y, Shen J, Geng P, Zhang W, Huang Q. An electrochemical glycan biosensor based on a thionine-bridged multiwalled carbon nanotube/gold nanoparticle composite-modified electrode. RSC Adv 2016. [DOI: 10.1039/c6ra23710j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A MWCNT/Th/AuNP composite, used to construct an electrochemical biosensor for the mannose assay of living cancer cells, contained thionine as an electron mediator and simplified detection based on enzymatic catalysis for signal amplification.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Chenyong Huang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuxiang Jiang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Jianzhong Shen
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Ping Geng
- Department of Chemistry
- East China Normal University
- Shanghai
- China
| | - Wen Zhang
- Department of Chemistry
- East China Normal University
- Shanghai
- China
| | - Qilin Huang
- Chemical Department
- YuXi Normal University
- Yuxi 653100
- China
| |
Collapse
|
22
|
Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Xu Y, Wu H, Huang C, Hao C, Wu B, Miao C, Chen S, Jia N. Sensitive detection of tumor cells by a new cytosensor with 3D-MWCNTs array based on vicinal-dithiol-containing proteins (VDPs). Biosens Bioelectron 2015; 66:321-6. [DOI: 10.1016/j.bios.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
|
24
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Ma H, Wang Y, Zhang H, Wu D, Guo A, Yan T, Wei Q, Du B. A sensitive electrochemical immunosensor for the detection of squamous cell carcinoma antigen by using PtAu nanoparticles loaded on TiO2colloidal spheres as labels. RSC Adv 2015. [DOI: 10.1039/c5ra06827d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensitive sandwich-type electrochemical immunosensor for detection of squamous cell carcinoma antigen (SCCA) was developed by using PtAu nanoparticles loaded on TiO2colloidal spheres (PtAu/TiO2) as secondary-antibody (Ab2) labels.
Collapse
Affiliation(s)
- Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yaoguang Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hui Zhang
- Department of Municipal and Environmental Engineering
- Shandong Urban Construction Vocational College
- Jinan 250103
- China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Aiping Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Tao Yan
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
26
|
Qiu Y, Deng D, Deng Q, Wu P, Zhang H, Cai C. Synthesis of magnetic Fe3O4–Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B 2015; 3:4487-4495. [DOI: 10.1039/c5tb00638d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and rapid SERS-based immunoassay for living cancer cells using magnetic Fe3O4–Au hybrid nanoparticles is reported.
Collapse
Affiliation(s)
- Yanchun Qiu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Dan Deng
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Qianwen Deng
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
27
|
Wang Y, Li Y, Ma H, Guo A, Du B, Yan T, Wei Q. An ultrasensitive electrochemical immunosensor for the detection of CD146 based on TiO2 colloidal sphere laden Au/Pd nanoparticles. Analyst 2015; 140:3557-64. [DOI: 10.1039/c5an00156k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An ultrasensitive electrochemical immunosensor was developed for detecting CD146. rGO-TEPA enhanced the loading capacity of Ab1 and facilitated the electron transfer. Au and Pd nanoparticles on the TiO2 colloidal sphere facilitated the decomposition of H2O2. The immunosensor exhibited an extremely low detection limit of 1.6 pg mL−1 for CD146.
Collapse
Affiliation(s)
- Yaoguang Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Aiping Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Tao Yan
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
28
|
Tepeli Y, Demir B, Timur S, Anik U. An electrochemical cytosensor based on a PAMAM modified glassy carbon paste electrode. RSC Adv 2015. [DOI: 10.1039/c5ra07893h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical detection of HeLa cancer cells with GCPE/AuNp/Cys/Glu/PAMAM/FA cytosensor.
Collapse
Affiliation(s)
- Yudum Tepeli
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000-Kotekli
- Turkey
| | - Bilal Demir
- Ege University
- Faculty of Science
- Department of Biochemistry
- Izmir
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Department of Biochemistry
- Izmir
- Turkey
| | - Ulku Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000-Kotekli
- Turkey
| |
Collapse
|
29
|
Liu J, Xin X, Zhou H, Zhang S. A Ternary Composite Based on Graphene, Hemin, and Gold Nanorods with High Catalytic Activity for the Detection of Cell-Surface Glycan Expression. Chemistry 2014; 21:1908-14. [DOI: 10.1002/chem.201404557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Indexed: 12/23/2022]
|
30
|
Zhou S, Zheng T, Chen Y, Zhang J, Li L, Lu F, Zhu JJ. Toward therapeutic effects evaluation of chronic myeloid leukemia drug: Electrochemical platform for caspase-3 activity sensing. Biosens Bioelectron 2014; 61:648-54. [DOI: 10.1016/j.bios.2014.05.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/04/2014] [Accepted: 05/21/2014] [Indexed: 11/15/2022]
|
31
|
Geng P, Fu Y, Yang M, Sun Q, Liu K, Zhang X, Xu Z, Zhang W. Amplified Electrochemical Immunosensor for Calmodulin Detection Based on Gold-Silver-Graphene Hybrid Nanomaterials and Enhanced Gold Nanorods Labels. ELECTROANAL 2014. [DOI: 10.1002/elan.201400220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Guo A, Li Y, Cao W, Meng X, Wu D, Wei Q, Du B. An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@Cu(x)OS yolk-shell nanostructures with porous shells as labels. Biosens Bioelectron 2014; 63:39-46. [PMID: 25058937 DOI: 10.1016/j.bios.2014.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
A novel and sensitive electrochemical immunosensor for ultrasensitive detection of pancreatic cancer biomarker carbohydrate antigen 199 (CA199) was proposed by using Au@Cu(x)OS yolk-shell nanostructures with porous shells as labels for signal amplification. Au@Cu(x)OS yolk-shell nanostructures exhibit high electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2) as analytical signal. Moreover, secondary antibody (Ab2) can adsorb on the surface of Au@Cu(x)OS with porous shells which has large surface area and could greatly increase the probability of Ab2-antigen interactions thereby leading to higher sensitivity. Reduced graphene oxide-tetraethylene pentamine (rGO-TEPA), containing abundant amine groups, was supported Au nanoparticles as a support platform to immobilize the primary antibody (Ab1). The resulting sensing interface of rGO-TEPA/AuNPs could provide a large electroconductive surface area, allowing high loadings of the biological recognition elements as well as the occurrence of electrocatalytic and electron-transfer processes. Under optimal conditions, the immunosensor exhibited a wide linear response to CA199 ranging from 0.001 to 12 U/mL with a low detection limit of 0.0005 U/mL. The designed immunosensor displayed good precision, high sensitivity, acceptable stability and reproducibility, and has been applied to the analysis of serum with satisfactory results. The proposed method provides a new promising platform of clinical immunoassay for other biomolecules.
Collapse
Affiliation(s)
- Aiping Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yueyun Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Wei Cao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xianchao Meng
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
33
|
Chen X, Wang Y, Zhang Y, Chen Z, Liu Y, Li Z, Li J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal Chem 2014; 86:4278-86. [PMID: 24684138 DOI: 10.1021/ac404070m] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We demonstrate a multivalent recognition and highly selective aptamer signal amplification strategy for electrochemical cytosensing and dynamic cell surface N-glycan expression evaluation by the combination of concanavalin A (Con A), a mannose binding protein, as a model, conjugated poly(amidoamine) dendrimer on a chemically reduced graphene oxide (rGO-DEN) interface, and aptamer- and horseradish peroxidase-modified gold nanoparticles (HRP-aptamer-AuNPs) as nanoprobes. In this strategy, the rGO-DEN can not only enhance the electron transfer ability but also provide a multivalent recognition interface for the conjugation of Con A that avoids the weak carbohydrate-protein interaction and dramatically improves the cell capture efficiency and the sensitivity of the biosensor for cell surface glycan. The high-affinity aptamer- and HRP-modified gold nanoparticles provide an ultrasensitive electrochemical probe with excellent specificity. As proof-of-concept, the detection of CCRF-CEM cell (human acute lymphoblastic leukemia) and its surface N-glycan was developed. It has demonstrated that the as-designed biosensor can be used for highly sensitive and selective cell detection and dynamic evaluation of cell surface N-glycan expression. A detection limit as low as 10 cells mL(-1) was obtained with excellent selectivity. Moreover, this strategy was also successfully applied for N-glycan expression inhibitor screening. These results imply that this biosensor has potential in clinical diagnostic and drug screening applications and endows a feasibility tool for insight into the N-glycan function in biological processes and related diseases.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wu D, Guo A, Guo Z, Xie L, Wei Q, Du B. Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosens Bioelectron 2014; 54:634-9. [DOI: 10.1016/j.bios.2013.11.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/30/2013] [Accepted: 11/12/2013] [Indexed: 02/03/2023]
|
35
|
Pandey B, Bhattarai JK, Pornsuriyasak P, Fujikawa K, Catania R, Demchenko AV, Stine KJ. Square-wave voltammetry assays for glycoproteins on nanoporous gold. J Electroanal Chem (Lausanne) 2014; 717-718:47-60. [PMID: 24611035 PMCID: PMC3941082 DOI: 10.1016/j.jelechem.2014.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A - ALP (or soybean agglutinin - ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A-ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL-1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay.
Collapse
Affiliation(s)
- Binod Pandey
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
- Center for Nanoscience University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Jay K. Bhattarai
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
- Center for Nanoscience University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Papapida Pornsuriyasak
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Kohki Fujikawa
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Rosa Catania
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| | - Keith J. Stine
- Department of Chemistry and Biochemistry University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
- Center for Nanoscience University of Missouri-St. Louis One University Boulevard Saint Louis, MO 63121
| |
Collapse
|
36
|
Wang X, Ju J, Li J, Li J, Qian Q, Mao C, Shen J. Preparation of Electrochemical Cytosensor for Sensitive Detection of HeLa Cells Based on Self-Assembled Monolayer. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Wang Y, Wei Q, Zhang Y, Wu D, Ma H, Guo A, Du B. A sandwich-type immunosensor using Pd-Pt nanocrystals as labels for sensitive detection of human tissue polypeptide antigen. NANOTECHNOLOGY 2014; 25:055102. [PMID: 24406637 DOI: 10.1088/0957-4484/25/5/055102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A sandwich-type immunosensor was developed for the detection of human tissue polypeptide antigen (hTPA). In this work, a graphene sheet (GS) was synthesized to modify the surface of a glassy carbon electrode (GCE), and Pd-Pt bimetallic nanocrystals were used as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for catalyzing hydrogen peroxide (H2O2) was recorded. And electrochemical impedance spectroscopy was used to characterize the fabrication process of the immunosensor. The anti-human tissue polypeptide antigen primary antibody (Ab1) was immobilized onto the GS modified GCE via cross-linking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS). With Ab1 immobilized onto the GS modified GCE and Ab2 linked on Pd-Pt bimetallic nanocrystals, the immunosensor demonstrated a wide linear range (0.0050-15 ng ml(-1)), a low detection limit (1.2 pg ml(-1)), good reproducibility, good selectivity and acceptable stability. This design strategy may provide many potential applications in the detection of other cancer biomarkers.
Collapse
Affiliation(s)
- Yaoguang Wang
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Zheng T, Zhang Q, Feng S, Zhu JJ, Wang Q, Wang H. Robust Nonenzymatic Hybrid Nanoelectrocatalysts for Signal Amplification toward Ultrasensitive Electrochemical Cytosensing. J Am Chem Soc 2014; 136:2288-91. [DOI: 10.1021/ja500169y] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tingting Zheng
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qingfeng Zhang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sheng Feng
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jun-Jie Zhu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qian Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
39
|
Wu Y, Xue P, Hui KM, Kang Y. Electrochemical- and Fluorescent-Mediated Signal Amplifications for Rapid Detection of Low-Abundance Circulating Tumor Cells on a Paper-Based Microfluidic Immunodevice. ChemElectroChem 2014. [DOI: 10.1002/celc.201300194] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Wu MS, Yuan DJ, Xu JJ, Chen HY. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 2013; 85:11960-5. [PMID: 24215536 DOI: 10.1021/ac402889z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.
Collapse
Affiliation(s)
- Mei-Sheng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | | | | | | |
Collapse
|
41
|
Sun C, Wang X, Yang X, Xing L, Zhao B, Yang X, Mao C. A label-free electrochemical aptasensor for sensitive thrombin detection in whole blood. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Wang Y, Chen Z, Liu Y, Li J. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation. NANOSCALE 2013; 5:7349-7355. [PMID: 23824149 DOI: 10.1039/c3nr01598j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 10(10). The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.
Collapse
Affiliation(s)
- Yangzhong Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
43
|
Wu D, Fan H, Li Y, Zhang Y, Liang H, Wei Q. Ultrasensitive electrochemical immunoassay for squamous cell carcinoma antigen using dumbbell-like Pt–Fe3O4 nanoparticles as signal amplification. Biosens Bioelectron 2013; 46:91-6. [DOI: 10.1016/j.bios.2013.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
|
44
|
Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes. Talanta 2013; 111:62-8. [DOI: 10.1016/j.talanta.2013.01.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 02/01/2023]
|
45
|
Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H. Nanoarchitectured Electrochemical Cytosensors for Selective Detection of Leukemia Cells and Quantitative Evaluation of Death Receptor Expression on Cell Surfaces. Anal Chem 2013; 85:5609-16. [DOI: 10.1021/ac400994p] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tingting Zheng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jia-Ju Fu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lihui Hu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fan Qiu
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Minjin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, Jiangsu 213164, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zi-Chun Hua
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Hui Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
46
|
Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J. A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens Bioelectron 2013; 49:79-85. [PMID: 23722045 DOI: 10.1016/j.bios.2013.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/26/2023]
Abstract
We developed a new electrochemiluminescence (ECL) platform for ultrasensitive and selective detection of leukemia cells. In order to construct the platform, the nonporous gold with controllable three-dimensional porosity and good conductivity was used to modify the screen-printed carbon electrode. The carbon quantum dots (CQDs) coated ZnO nanosphere (ZnO@CQDs) were used as good ECL label with low cytotoxicity and good biocompatibility. Structure characterization was obtained by means of transmission electron microscopy and scanning electron microscopy images. The aptamer was used for cell capture and the concanavalin A conjugated ZnO@CQDs was used for selective recognition of the cell surface carbohydrate. The proposed method showed a good analytical performance for the detection of K562 cells ranging from 1.0 × 10(2) to 2.0 × 10(7) cells mL(-1) with a detection limit of 46 cells mL(-1). The as-proposed device has the advantages of high sensitivity, nice specificity and good stability and could offer great promise for sensitive detection of leukemia cells in response to therapy.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hu C, Yang DP, Wang Z, Yu L, Zhang J, Jia N. Improved EIS Performance of an Electrochemical Cytosensor Using Three-Dimensional Architecture Au@BSA as Sensing Layer. Anal Chem 2013; 85:5200-6. [DOI: 10.1021/ac400556q] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chenyi Hu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Ziyi Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | - Lili Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
48
|
Chen Z, Liu Y, Wang Y, Zhao X, Li J. Dynamic Evaluation of Cell Surface N-Glycan Expression via an Electrogenerated Chemiluminescence Biosensor Based on Concanavalin A-Integrating Gold-Nanoparticle-Modified Ru(bpy)32+-Doped Silica Nanoprobe. Anal Chem 2013; 85:4431-8. [DOI: 10.1021/ac303572g] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuhai Chen
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yang Liu
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yangzhong Wang
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Xin Zhao
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Jinghong Li
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| |
Collapse
|
49
|
Reuel NF, Mu B, Zhang J, Hinckley A, Strano MS. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem Soc Rev 2013; 41:5744-79. [PMID: 22868627 DOI: 10.1039/c2cs35142k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling oligosaccharides displayed on protein surfaces, such as liquid chromatography, mass spectrometry, capillary electrophoresis, and microarray methods, are limited by sample pretreatment and quantitative accuracy. Microarrayed platforms can be improved with methods that better estimate kinetic parameters rather than simply reporting relative binding information. These quantitative glycan sensors are enabled by an emerging class of nanoengineered materials that differ in their mode of signal transduction from traditional methods. Platforms that respond to mass changes include a quartz crystal microbalance and cantilever sensors. Electronic response can be detected from electrochemical, field effect transistor, and pore impedance sensors. Optical methods include fluorescent frontal affinity chromatography, surface plasmon resonance methods, and fluorescent carbon nanotubes. After a very brief primer on glycobiology and its connection to medicine, these emerging systems are critically reviewed for their potential use as core sensors in future glycoprofiling tools.
Collapse
Affiliation(s)
- Nigel F Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
50
|
Nie G, Bai Z, Yu W, Zhang L. Electrochemiluminescence biosensor for Ramos cells based on a nanostructured conducting polymer composite material (PICA‐MWNTs). ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26623] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guangming Nie
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Zhimin Bai
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Wenying Yu
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Lin Zhang
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| |
Collapse
|