1
|
Ami D, Santambrogio C, Vertemara J, Bovio F, Santisteban-Veiga A, Sabín J, Zampella G, Grandori R, Cipolla L, Natalello A. The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J Am Chem Soc 2024; 146:27755-27769. [PMID: 39348444 DOI: 10.1021/jacs.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Human osteocalcin (OC) undergoes reversible, vitamin K-dependent γ-carboxylation at three glutamic acid residues, modulating its release from bones and its hormonal roles. A complete understanding of OC roles and structure-activity relationships is still lacking, as only uncarboxylated and few differently carboxylated variants have been considered so far. To fill this lack of knowledge, a comprehensive experimental and computational investigation of the structural properties and calcium-binding activity of all the OC variants is reported here. Such a comparative study indicates that the carboxylation sites are not equivalent and differently affect the OC structure and interaction with calcium, properties that are relevant for the modulation of OC functions. This study also discloses cooperative effects and provides structural and mechanistic interpretation. The disclosed peculiar features of each carboxylated proteoform strongly suggest that considering all eight possible OC variants in future studies may help rationalize some of the conflicting hypotheses observed in the literature.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Andrea Santisteban-Veiga
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| |
Collapse
|
2
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
3
|
Aptekmann AA, Buongiorno J, Giovannelli D, Glamoclija M, Ferreiro DU, Bromberg Y. mebipred: identifying metal binding potential in protein sequence. Bioinformatics 2022; 38:3532-3540. [PMID: 35639953 PMCID: PMC9272798 DOI: 10.1093/bioinformatics/btac358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/27/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Motivation metal-binding proteins have a central role in maintaining life processes. Nearly one-third of known protein structures contain metal ions that are used for a variety of needs, such as catalysis, DNA/RNA binding, protein structure stability, etc. Identifying metal-binding proteins is thus crucial for understanding the mechanisms of cellular activity. However, experimental annotation of protein metal-binding potential is severely lacking, while computational techniques are often imprecise and of limited applicability. Results we developed a novel machine learning-based method, mebipred, for identifying metal-binding proteins from sequence-derived features. This method is over 80% accurate in recognizing proteins that bind metal ion-containing ligands; the specific identity of 11 ubiquitously present metal ions can also be annotated. mebipred is reference-free, i.e. no sequence alignments are involved, and is thus faster than alignment-based methods; it is also more accurate than other sequence-based prediction methods. Additionally, mebipred can identify protein metal-binding capabilities from short sequence stretches, e.g. translated sequencing reads, and, thus, may be useful for the annotation of metal requirements of metagenomic samples. We performed an analysis of available microbiome data and found that ocean, hot spring sediments and soil microbiomes use a more diverse set of metals than human host-related ones. For human microbiomes, physiological conditions explain the observed metal preferences. Similarly, subtle changes in ocean sample ion concentration affect the abundance of relevant metal-binding proteins. These results highlight mebipred’s utility in analyzing microbiome metal requirements. Availability and implementation mebipred is available as a web server at services.bromberglab.org/mebipred and as a standalone package at https://pypi.org/project/mymetal/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A A Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA.,Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - D Giovannelli
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Biology, University of Naples Federico II, Naples, Italy.,Institute for Marine Biological Resources and Biotechnology-IRBIM, National Research Council of Italy, CNR, Ancona, Italy
| | - M Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, New Brunswick, NJ, 07102, USA
| | - D U Ferreiro
- Protein Physiology Lab, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET-IQUIBICEN, Buenos Aires, 1428, Argentina
| | - Y Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
| |
Collapse
|
4
|
Mechanism of Zn 2+ and Ca 2+ Binding to Human S100A1. Biomolecules 2021; 11:biom11121823. [PMID: 34944467 PMCID: PMC8699212 DOI: 10.3390/biom11121823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
S100A1 is a member of the S100 family of small ubiquitous Ca2+-binding proteins, which participates in the regulation of cell differentiation, motility, and survival. It exists as homo- or heterodimers. S100A1 has also been shown to bind Zn2+, but the molecular mechanisms of this binding are not yet known. In this work, using ESI-MS and ITC, we demonstrate that S100A1 can coordinate 4 zinc ions per monomer, with two high affinity (KD~4 and 770 nm) and two low affinity sites. Using competitive binding experiments between Ca2+ and Zn2+ and QM/MM molecular modeling we conclude that Zn2+ high affinity sites are located in the EF-hand motifs of S100A1. In addition, two lower affinity sites can bind Zn2+ even when the EF-hands are saturated by Ca2+, resulting in a 2Ca2+:S100A1:2Zn2+ conformer. Finally, we show that, in contrast to calcium, an excess of Zn2+ produces a destabilizing effect on S100A1 structure and leads to its aggregation. We also determined a higher affinity to Ca2+ (KD~0.16 and 24 μm) than was previously reported for S100A1, which would allow this protein to function as a Ca2+/Zn2+-sensor both inside and outside cells, participating in diverse signaling pathways under normal and pathological conditions.
Collapse
|
5
|
Difference in the binding mechanism of distinct antimony forms in bovine serum albumin. Biometals 2021; 34:493-510. [PMID: 33587218 DOI: 10.1007/s10534-021-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The toxicity of antimony (Sb) is closely related to its chemical forms. To further realize the toxicity risk of different forms of Sb, the separate and simultaneous binding mechanisms of antimony potassium tartrate/potassium pyroantimonate with bovine serum albumin (BSA) were investigated with muti-spectroscopic methods. Fluorescence quenching result and UV-vis absorption spectra showed that a 1:1 complex was formed between antimony potassium tartrate/potassium pyroantimonate and BSA through a modest binding force. The results revealed that the binding of antimony potassium tartrate/potassium pyroantimonate to BSA caused changes in the secondary structure of BSA. Both Sb forms (antimony potassium tartrate and potassium pyroantimonate) were able to interact with BSA when coexisting but there was a binding influence on their interacting with the BSA. Both Sb forms interfere with the binding of the other to protein.
Collapse
|
6
|
Chen Y, Yuan S, Liu Y, Huang G. Rapid desalting during electrospray ionization mass spectrometry for investigating protein-ligand interactions in the presence of concentrated salts. Anal Chim Acta 2021; 1141:120-126. [PMID: 33248644 DOI: 10.1016/j.aca.2020.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
Investigation of protein-ligand interactions in physiological conditions is crucial for better understanding of biochemistry because the binding stoichiometry and conformations of complexes in biological processes, such as various types of regulation and transportation, could reveal key pathways in organisms. Nanoelectrospray ionization mass spectrometry is widely used in studies of biological processes and systems biology. However, non-volatile salts in biological fluid may adversely interfere with nanoelectrospray ionization mass spectrometry. In this study, the previously developed method of induced nanoelectrospray ionization was used to facilitate in situ desalting of protein in solutions with high concentrations of non-volatile salts, and direct investigation of protein-ligand interactions for the first time. In situ desalting occurred at the tip of emitters within a short period lasting for a few to tens of milliseconds, enabling the maintenance of nativelike conditions compatible with mass spectrometry measurements. Induced nanoelectrospray ionization was driven by pulsed potential and exhibited microelectrophoresis effect in each spray cycle, which is not observed in conventional nanoelectrospray ionization because the continuous spray procedure is driven by direct current. Microelectrophoresis caused desalting through micron-sized spray emitters (1-20 μm), as confirmed experimentally with proteins in 100 mM NaCl solution. The method developed in this study has been further illustrated as a potential option for fast and direct identification of protein-ligand (small molecules or metal ions) interactions in complex samples. The results of this study demonstrate that the newly developed method may represent a reliable approach for investigations of proteins and protein complexes in biological samples.
Collapse
Affiliation(s)
- Yuting Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Siming Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Yangzhong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Guangming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, PR China.
| |
Collapse
|
7
|
Yousef EN, Angel LA. Comparison of the pH-dependent formation of His and Cys heptapeptide complexes of nickel(II), copper(II), and zinc(II) as determined by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4489. [PMID: 31881105 DOI: 10.1002/jms.4489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The analog methanobactin (amb) peptide with the sequence ac-His1 -Cys2 -Gly3 -Pro4 -Tyr5 -His6 -Cys7 (amb5A ) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5A binds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C-terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility-mass spectrometry (IM-MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution-phase behavior of the amb peptides as possible and an analysis of how the IM-MS results compare with the expected solution-phase behavior is discussed. The oligopeptides studied here have applications for tag-based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal-protein enzymes such as matrix metalloproteinases.
Collapse
Affiliation(s)
- Enas N Yousef
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| |
Collapse
|
8
|
Nepal MR, Kim GH, Cha DH, Jeong TC. Assessment of skin sensitizing potential of metals with β-galactosidase-expressing E. coli culture system. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:879-889. [PMID: 31507242 DOI: 10.1080/15287394.2019.1664958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been a challenge to develop in vitro alternative test methods for accurate prediction of metallic products which may exert skin sensitization, as several test methods adopted by OECD were relatively ineffective in assessing the capacity for metallic compounds to exert sensitizing reactions, compared with organic test substances. Based upon these findings, a system that incorporates β-galactosidase producing E. coli cultures was tested for its predictive capacity to well-known metallic sensitizers. In this system, E. coli cells were incubated with metal salts at various concentrations and β-galactosidase suppression by each test metal was determined. Fourteen local lymph node assay (LLNA) categorized metal salts were examined. Although color interference from metal salts was minimal, a fluorometric detection system was also employed using 4-methylumbelliferyl galactopyranoside as a substrate for β-galactosidase to avoid the color interference, concomitantly with the original UV-spectrometric method. Data demonstrated that two detection methods were comparable and complementary. In addition, most of the metallic sensitizers were correctly identified at 0.6 and 0.8 mM concentrations. Despite the lower specificity obtained in the current study and small number of substances tested, the developed method appears to be a relatively simple and effective in vitro method for detecting metallic sensitizers. When 61 chemicals tested in the β-galactosidase producing E. coli cultures including the present study were collectively analyzed, the prediction capacity was as high as other OECD-adopted tests: 95.6% of sensitivity, 66.7% of specificity, and 88.5% of accuracy. It is important to emphasize that animals or mammalian cell cultures were not required in the current method, which are in accordance with the EU guidelines on restricted or banned animal testing.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Geon Ho Kim
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Dong Ho Cha
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
9
|
Zheng Q, Ruan X, Tian Y, Hu J, Wan N, Lu W, Xu X, Wang G, Hao H, Ye H. Ligand-protein target screening from cell matrices using reactive desorption electrospray ionization-mass spectrometry via a native-denatured exchange approach. Analyst 2019; 144:512-520. [PMID: 30489587 DOI: 10.1039/c8an01708e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Native mass spectrometry has been recognized as a powerful tool for probing interactions between small molecules, such as drugs and natural products, and target proteins. However, the presence of heterogeneous proteins and metabolites in real biological systems can alter the conformations of target proteins or compete with candidate ligands, thus necessitating a method for measuring binding stoichiometries in matrices aside from the extensively used pure/recombinant protein systems. Furthermore, some small molecule-protein interactions have a transient and low-affinity nature and thus can be mis-assigned as nonspecific binding complexes that are often formed during the native ESI process. A native-denatured exchange (NDX) approach was recently developed using a reactive desorption electrospray ionization-mass spectrometer (DESI-MS) setup to screen specific interacting partners. The method works by gradually increasing the composition of denaturing solvents contained in the DESI spray and thus conferring a switch from a native to denatured ionization environment. This change impairs three-dimensional structures of target proteins and disrupts specific ligand-protein interactions, leading to decreased holo/apo ratios. In contrast, ligand-protein complexes exhibiting different trends are assigned as nonspecific interactions. Herein, we applied the NDX approach to probe specific ligand-protein interactions in biological matrices. We first used mixtures of model ligands and proteins to examine the use of reactive DESI-MS in recognizing ligand-target binding in mixtures. Subsequently, we used the NDX approach to analyze binding affinity curves of ligands to target proteins spiked in cell lysates with the aid of size exclusion chromatography and demonstrated its use in probing specific ligand-protein interactions from cell matrices.
Collapse
Affiliation(s)
- Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zheng Q, Tian Y, Ruan X, Chen H, Wu X, Xu X, Wang G, Hao H, Ye H. Probing specific ligand-protein interactions by native-denatured exchange mass spectrometry. Anal Chim Acta 2018; 1036:58-65. [PMID: 30253837 DOI: 10.1016/j.aca.2018.07.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Probing ligand-target protein interactions provides essential information for deep understanding of biochemical machinery and design of drug screening assays. Native electrospray ionization-mass spectrometry (ESI-MS) is promising for direct analysis of ligand-protein complexes. However, it lacks the ability to distinguish between specific and non-specific ligand-protein interactions, and to further recognize the specifically bound proteins as drug target candidates, which remains as a major challenge in the field of drug developments by far. Herein we report a native-denatured exchange (NDX) mass spectrometry (MS) acquisition approach using a liquid sample-desorption electrospray ionization (LS-DESI) setup, and demonstrate its capability in enabling a change from native detection of noncovalent ligand-protein complexes to denatured analysis using three model ligand-protein complexes including myoglobin, CDP-ribonuclease and N,N',N″-triacetylchitotriose (NAG3)-lysozyme. Notably, we found the NDX-MS approach can readily discriminate specific ligand-protein interactions from nonspecific ones, as revealed by their distinct dynamic profiles of Kd as a function of the DESI spraying flow rate. Consequently, this NDX-MS approach holds promise for future applications to discovering specific protein targets for ligands of interest, and to screening compounds with high specificity to drug targets and thus eliminates off-target effects.
Collapse
Affiliation(s)
- Qiuling Zheng
- Department of Pharmaceutical Analysis, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Yang Tian
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Xujun Ruan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, United States
| | - Xunxun Wu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Xiaowei Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China.
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
11
|
Jeanne Dit Fouque K, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Metal ions induced secondary structure rearrangements: mechanically interlocked lassovs.unthreaded branched-cyclic topoisomers. Analyst 2018; 143:2323-2333. [DOI: 10.1039/c8an00138c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change.
Collapse
Affiliation(s)
| | - Javier Moreno
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | | |
Collapse
|
12
|
Kitova EN, Yao Y, Klassen JS. Stabilizing protein-ligand complexes in ESI–MS using solution additives: Comparing the effects of amino acids and imidazole. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2017; 420:2-8. [DOI: 10.1016/j.ijms.2017.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Laitaoja M, Isoniemi S, Valjakka J, Mándity IM, Jänis J. Deciphering metal ion preference and primary coordination sphere robustness of a designed zinc finger with high-resolution mass spectrometry. Protein Sci 2016; 26:198-207. [PMID: 27750369 DOI: 10.1002/pro.3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022]
Abstract
Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high-resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub-micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues.
Collapse
Affiliation(s)
- Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Sari Isoniemi
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Jarkko Valjakka
- BioMediTech, University of Tampere, Tampere, FI-33520, Finland
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| |
Collapse
|
14
|
Pedro L, Van Voorhis WC, Quinn RJ. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1520-30. [PMID: 27225419 PMCID: PMC4972871 DOI: 10.1007/s13361-016-1417-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 05/28/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase (PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Liliana Pedro
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | | | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Yao Y, Shams-Ud-Doha K, Daneshfar R, Kitova EN, Klassen JS. Quantifying protein-carbohydrate interactions using liquid sample desorption electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:98-106. [PMID: 25315460 DOI: 10.1007/s13361-014-1008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.
Collapse
Affiliation(s)
- Yuyu Yao
- Alberta Glycomics Center and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
16
|
Redweik S, Cianciulli C, Hara M, Xu Y, Wätzig H. Precise, fast and flexible determination of protein interactions by affinity capillary electrophoresis. Part 2: Cations. Electrophoresis 2013; 34:1812-9. [DOI: 10.1002/elps.201300050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Sabine Redweik
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| | - Claudia Cianciulli
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| | - Masakazu Hara
- Department of Applied Biological Chemistry; Shizuoka University; Shizuoka; Japan
| | | | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig; Germany
| |
Collapse
|
17
|
Chen SH, Russell WK, Russell DH. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal Chem 2013; 85:3229-37. [PMID: 23421923 DOI: 10.1021/ac303522h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metalation and demetalation of human metallothionein-2A (MT) with Cd(2+) is investigated by using chemical labeling and "bottom-up" and "top-down" proteomics approaches. Both metalation and demetalation of MT-2A by Cd(2+) are shown to be domain specific and occur as two distinct processes. Metalation involves sequential addition of Cd(2+) to the α-domain resulting in formation of an intermediate, Cd4MT. Chemical labeling with N-ethylmaleimide (NEM) and tandem mass spectrometry experiments clearly show that the four metal ions are located in the α-domain. In the presence of excess Cd(2+), the Cd4MT intermediate reacts to add Cd(2+) to the β-domain to yield the fully metalated Cd7MT. Demetalation occurs in the reverse order, i.e., Cd(2+) is removed (by EDTA) first from the β-domain followed by Cd(2+) removal from the α-domain. Metalation of human MT-2A is shown to be metal ion specific by comparing relative metal ion binding constants for Cd(2+) and Zn(2+).
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
18
|
Han L, Kitov PI, Kitova EN, Tan M, Wang L, Xia M, Jiang X, Klassen JS. Affinities of recombinant norovirus P dimers for human blood group antigens. Glycobiology 2013; 23:276-85. [PMID: 23118206 PMCID: PMC3555502 DOI: 10.1093/glycob/cws141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Noroviruses (NoVs), the major cause of viral acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as receptors or attachment factors. To gain a deeper understanding of the interplay between NoVs and their hosts, the affinities of recombinant P dimers (P₂'s) of a GII.4 NoV (VA387) to a library of 41 soluble analogs of HBGAs were measured using the direct electrospray ionization mass spectrometry assay. The HBGAs contained the A, B, H and Lewis epitopes, with variable sizes (2-6 residues) and different types (1-6). The results reveal that the P₂'s exhibit a broad specificity for the HBGAs and bind to all of the oligosaccharides tested. Overall, the affinities are relatively low, ranging from 400 to 3000 M⁻¹ and are influenced by the chain type: 3 > 1 ≈ 2 ≈ 4 ≈ 5 ≈ 6 for H antigens; 6 > 1 ≈ 3 ≈ 4 ≈ 5 > 2 for A antigens; 3 > 1 ≈ 4 ≈ 5 ≈ 6 > 2 for B antigens, but not by chain length. The highest-affinity ligands are B type 3 (3000 ± 300 M⁻¹) and A type 6 (2350 ± 60 M⁻¹). While the higher affinity to the type 3 H antigen was previously observed, preferential binding to the types 6 and 3 antigens with A and B epitopes, respectively, has not been previously reported. A truncated P domain dimer (lacking the C-terminal arginine cluster) exhibits similar binding. The central-binding motifs in the HBGAs were identified by molecular-docking simulations.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, AB, CanadaT6G 2G2
| | - Pavel I Kitov
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, AB, CanadaT6G 2G2
| | - Elena N Kitova
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, AB, CanadaT6G 2G2
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John S Klassen
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, AB, CanadaT6G 2G2
- To whom correspondence should be addressed: Tel: +1-780-492-3501; Fax: +1-780-492-8231; e-mail:
| |
Collapse
|
19
|
Han L, Hyung SJ, Ruotolo BT. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discuss 2013; 160:371-88; discussion 389-403. [PMID: 23795511 PMCID: PMC3695445 DOI: 10.1039/c2fd20099f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Collapse
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Suk-Joon Hyung
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| |
Collapse
|
20
|
Mealman TD, Zhou M, Affandi T, Chacón KN, Aranguren ME, Blackburn NJ, Wysocki VH, McEvoy MM. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Biochemistry 2012; 51:6767-75. [PMID: 22812620 DOI: 10.1021/bi300596a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gram-negative bacteria, such as Escherichia coli, utilize efflux resistance systems in order to expel toxins from their cells. Heavy-metal resistance is mediated by resistance nodulation cell division (RND)-based efflux pumps composed of a tripartite complex that includes an RND-transporter, an outer-membrane factor (OMF), and a membrane fusion protein (MFP) that spans the periplasmic space. MFPs are necessary for complex assembly and have been hypothesized to play an active role in substrate efflux. Crystal structures of MFPs are available, however incomplete, as large portions of the apparently disordered N- and C-termini are unresolved. Such is the case for CusB, the MFP of the E. coli Cu(I)/Ag(I) efflux pump CusCFBA. In this work, we have investigated the structure and function of the N-terminal region of CusB, which includes the metal-binding site and is missing from previously determined crystal structures. Results from mass spectrometry and X-ray absorption spectroscopy show that the isolated N-terminal 61 residues (CusB-NT) bind metal in a 1:1 stoichiometry with a coordination site composed of M21, M36, and M38, consistent with full-length CusB. NMR spectra show that CusB-NT is mostly disordered in the apo state; however, some slight structure is adopted upon metal binding. Much of the intact protein's function is maintained in this fragment as CusB-NT binds metal in vivo and in vitro, and metal is transferred between the metallochaperone CusF and CusB-NT in vitro. Functional analysis in vivo shows that full-length CusB is necessary in an intact polypeptide for full metal resistance, though CusB-NT alone can contribute partial metal resistance. These findings reinforce the theory that the role of CusB is not only to bind metal but also to play an active role in efflux.
Collapse
Affiliation(s)
- Tiffany D Mealman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 2012; 51:4244-53. [DOI: 10.1021/bi300436x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
22
|
Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:431-41. [PMID: 22270873 DOI: 10.1007/s13361-011-0311-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.
Collapse
Affiliation(s)
- Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | |
Collapse
|
23
|
El-Hawiet A, Shoemaker GK, Daneshfar R, Kitova EN, Klassen JS. Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. Anal Chem 2011; 84:50-8. [PMID: 22128847 DOI: 10.1021/ac202760e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Applications of a catch and release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against target proteins are described. Direct ESI-MS measurements were performed on solutions containing a target protein (a single chain antibody, an antigen binding fragment, or a fragment of a bacterial toxin) and a library of carbohydrates containing multiple specific ligands with affinities in the 10(3) to 10(6) M(-1) range. Ligands with moderate affinity (10(4) to 10(6) M(-1)) were successfully detected from mixtures containing >200 carbohydrates (at concentrations as low as 0.25 μM each). Additionally, the absolute affinities were estimated from the abundance of free and ligand-bound protein ions determined from the ESI mass spectrum. Multiple low affinity ligands (~10(3) M(-1)) were successfully detected in mixtures containing >20 carbohydrates (at concentrations of ~10 μM each). However, identification of specific interactions required the use of the reference protein method to correct the mass spectrum for the occurrence of nonspecific carbohydrate-protein binding during the ESI process. The release of the carbohydrate ligands, as ions, was successfully demonstrated using collision-induced dissociation performed on the deprotonated ions of the protein-carbohydrate complexes. The use of ion mobility separation, performed on deprotonated carbohydrate ions following their release from the complex, allowed for the positive identification of isomeric ligands.
Collapse
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | |
Collapse
|
24
|
Lu Y, Prudent M, Fauvet B, Lashuel HA, Girault HH. Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-Synuclein in the pathogenesis of Parkinson's Disease and related disorders. ACS Chem Neurosci 2011; 2:667-75. [PMID: 22860160 DOI: 10.1021/cn200074d] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein (α-syn) is a 140-amino acid protein that plays a central role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies. However, the molecular determinants that are responsible for triggering and/or propagating α-syn aggregation and toxicity remain poorly understood. Several studies have suggested that there are direct interactions between different metals and α-syn, but the role of metal ions and α-syn in the pathogenesis of PD is not firmly established. Interestingly, the majority of disease-associated post-translational modifications (PTMs) (e.g., truncation, phosphorylation, and nitration) of α-syn occur at residues within the C-terminal region (Y125, S129, Y133, and Y136) and in very close proximity to the putative metal binding sites. Therefore, we hypothesized that phosphorylation within this domain could influence the α-syn-metal interactions. In this paper, we sought to map the interactions between the di- and trivalent cations, Cu(II), Pb(II), Fe(II), and Fe(III), and the C-terminal region of α-syn encompassing residues 107-140 and to determine how phosphorylation at S129 or Y125 alters the specificity and binding affinity of metals using electrospray ionization-mass spectrometry (ESI-MS) and fluorescence spectroscopy. We demonstrate that D115-M116 and P128-S129 act as additional Cu(II) binding sites and show for the first time that the residues P128-S129 and D119 are also involved in Pb(II) and Fe(II) coordination, although D119 is not essential for binding to Fe(II) and Pb(II). Furthermore, we demonstrate that phosphorylation at either Y125 or S129 increases the binding affinity of Cu(II), Pb(II), and Fe(II), but not Fe(III). Additionally, we also show that phosphorylations at these residues lead to a shift in the binding sites of metal ions from the N-terminus to the C-teminus. Together, our findings provide critical insight into and expand our understanding of the molecular and structural bases underlying the interactions between α-syn and metal ions, including the identification of novel metal binding sites, and highlight the potential importance of cross-talk between post-translational modifications and metal ion binding in modulating α-syn functional and aggregation properties that are regulated by its C-terminal domain.
Collapse
Affiliation(s)
- Yu Lu
- Laboratoire d’Electrochimie Physique et Analytique, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michel Prudent
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 15, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 15, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 15, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique et Analytique, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Kitova EN, Soya N, Klassen JS. Identifying Specific Small-Molecule Interactions Using Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:5160-7. [DOI: 10.1021/ac200244u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena N. Kitova
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Naoto Soya
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
26
|
Rhoads TW, Lopez NI, Zollinger DR, Morré JT, Arbogast BL, Maier CS, DeNoyer L, Beckman JS. Measuring copper and zinc superoxide dismutase from spinal cord tissue using electrospray mass spectrometry. Anal Biochem 2011; 415:52-8. [PMID: 21453670 DOI: 10.1016/j.ab.2011.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/22/2011] [Accepted: 03/24/2011] [Indexed: 01/16/2023]
Abstract
Metals are key cofactors for many proteins, yet quantifying the metals bound to specific proteins is a persistent challenge in vivo. We have developed a rapid and sensitive method using electrospray ionization mass spectrometry to measure Cu,Zn superoxide dismutase (SOD1) directly from the spinal cord of SOD1-overexpressing transgenic rats. Metal dyshomeostasis has been implicated in motor neuron death in amyotrophic lateral sclerosis (ALS). Using the assay, SOD1 was directly measured from 100 μg of spinal cord, allowing for anatomical quantitation of apo, metal-deficient, and holo SOD1. SOD1 was bound on a C(4) Ziptip that served as a disposable column, removing interference by physiological salts and lipids. SOD1 was eluted with 30% acetonitrile plus 100 μM formic acid to provide sufficient hydrogen ions to ionize the protein without dislodging metals. SOD1 was quantified by including bovine SOD1 as an internal standard. SOD1 could be measured in subpicomole amounts and resolved to within 2 Da of the predicted parent mass. The methods can be adapted to quantify modifications to other proteins in vivo that can be resolved by mass spectrometry.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Averseng O, Hagège A, Taran F, Vidaud C. Surface plasmon resonance for rapid screening of uranyl affine proteins. Anal Chem 2010; 82:9797-802. [PMID: 21069968 DOI: 10.1021/ac102578y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A sensitive immunoassay based on SPR analysis was developed to measure uranyl cation (UO(2)(2+)) affinity for any protein in a free state under physiological conditions. The technique involves immobilization of a specific monoclonal antibody (mAb) raised against UO(2)(2+) and 1,10-phenanthroline-2,9-dicarboxylic acid (DCP) used as a probe of UO(2)(2+) captured by the mAb. Calibration curves were established for accurate determination of UO(2)(2+) concentrations with a detection limit of 7 nM. The remaining free UO(2)(2+) could be accurately quantified from the different protein-metal equilibrium and a dose-response curve established for K(D) determination. This generic method was applied not only to proteins such as transferrin and albumin but also to small phosphonated ligands. Its robustness allows the fast UO(2)(2+) K(D) determination of any kind of macromolecules and small ligands using very few amount of compounds, thus opening new prospects in the field of uranium toxicity.
Collapse
Affiliation(s)
- Olivier Averseng
- Service de Biochimie et de Toxicologie Nucléaire/LEPC, DSV/iBEB, CEA Marcoule, BP 17 171, F-30207 Bagnols sur Cèze, France
| | | | | | | |
Collapse
|
29
|
Lu Y, Prudent M, Qiao L, Mendez MA, Girault HH. Copper(I) and copper(II) binding to β-amyloid 16 (Aβ16) studied by electrospray ionization mass spectrometry. Metallomics 2010; 2:474-9. [PMID: 21072347 DOI: 10.1039/c004693k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-β-amyloid 16 (Aβ16) complexes were investigated by electrospray ionization mass spectrometry (ESI-MS). Copper(i) and (ii) complexes were formed on-line in a microchip electrospray emitter by using a sacrificial copper electrode as the anode in positive ionization mode. In the presence of ascorbic acid in the peptide solution, the amount of Cu(i)-Aβ16 generated electrochemically was even higher. A kinetic model is proposed to account for the generation of copper complexes. The structure of Cu(i)-Aβ16 was investigated by tandem mass spectrometry (MS/MS), and the binding site of Cu(i) to Aβ16 was identified at the His13, His14 residues. Cu(ii)-Aβ16 was also investigated by MS/MS and, based on the unusual observations of a-ions, the two binding residues of His13 and His14 of Aβ16 to Cu(ii) were also confirmed. This approach provides direct information on Cu(i)-Aβ16 complexes generated in solution from metallic copper and gives evidence that both His13 and His14 are involved in the coordination of both Cu(i)- and Cu(ii)-Aβ16 complexes.
Collapse
Affiliation(s)
- Yu Lu
- Laboratoire d'Electrochimie Physique et Analytique, Station 6, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Pan J, Konermann L. Calcium-Induced Structural Transitions of the Calmodulin−Melittin System Studied by Electrospray Mass Spectrometry: Conformational Subpopulations and Metal-Unsaturated Intermediates. Biochemistry 2010; 49:3477-86. [DOI: 10.1021/bi100261c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
31
|
Utley B, Angel LA. Effects of transition metal ion identity and π-cation interactions in metal-bis(peptide) complexes containing phenylalanine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:631-643. [PMID: 21173465 DOI: 10.1255/ejms.1102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electrospray ionization-tandem mass spectrometry was used to study the effects of the metal ion identity and π-cation interactions on the dissociation pathways of metal-bis(peptide) complexes, where the metal is either Mn(2+), Co(2+), Ni(2+), Cu(2+), or Zn(2+); and the peptide is either FGGF, GGGG, GF, or GG, where G is glycine and F is phenylalanine. The [(FGGF)(FGGF-H) + M(2+)](+) and [(GGGG)(GGGG-H) + M(2+)](+) complexes dissociated by losing one FGGF or GGGG, respectively. Relative binding affinities were measured using the crossover points, where the parent and product ions were equal in ion abundance and a normalized-collision energy scale. The results indicate the relative binding affinities for FGGF and GGGG follow the same order with respect to the transition metal ion identity: Cu(2+) < Ni(2+) < Mn(2+) ≈ Zn(2+) < Co(2+), and the π-cation interactions in the FGGF complex have a measureable stabilizing effect. In contrast, the main fragmentation channels of [(GF)(GF-H) + M(2+)]+ and [(GG)(GG-H) + M(2+)](+) are loss of CO(2) and 2CO(2) with the [(GF)(GF-H) + M(2+)](+) complex also exhibiting cinnamic acid ,GF, residual glycine, cinnamate and styrene loss.
Collapse
Affiliation(s)
- Brandon Utley
- Department of Chemistry, Texas A&M University-Commerce, Texas 75429, USA
| | | |
Collapse
|