1
|
Jang JH, Kim S, Kim SG, Lee J, Lee DG, Jang J, Jeong YS, Song DH, Min JK, Park JG, Lee MS, Han BS, Son JS, Lee J, Lee NK. A Sensitive Immunodetection Assay Using Antibodies Specific to Staphylococcal Enterotoxin B Produced by Baculovirus Expression. BIOSENSORS 2022; 12:bios12100787. [PMID: 36290925 PMCID: PMC9599101 DOI: 10.3390/bios12100787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a potent bacterial toxin that causes inflammatory stimulation and toxic shock, thus it is necessary to detect SEB in food and environmental samples. Here, we developed a sensitive immunodetection system using monoclonal antibodies (mAbs). Our study is the first to employ a baculovirus expression vector system (BEVS) to produce recombinant wild-type SEB. BEVS facilitated high-quantity and pure SEB production from suspension-cultured insect cells, and the SEB produced was characterized by mass spectrometry analysis. The SEB was stable at 4 °C for at least 2 years, maintaining its purity, and was further utilized for mouse immunization to generate mAbs. An optimal pair of mAbs non-competitive to SEB was selected for sandwich enzyme-linked immunosorbent assay-based immunodetection. The limit of detection of the immunodetection method was 0.38 ng/mL. Moreover, it displayed higher sensitivity in detecting SEB than commercially available immunodetection kits and retained detectability in various matrices and S. aureus culture supernatants. Thus, the results indicate that BEVS is useful for producing pure recombinant SEB with its natural immunogenic property in high yield, and that the developed immunodetection assay is reliable and sensitive for routine identification of SEB in various samples, including foods.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Sungsik Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seul-Gi Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaemin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dong-Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jieun Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Young-Su Jeong
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Dong-Hyun Song
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jee-Soo Son
- iNtRON Biotechnology, 137 Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| |
Collapse
|
3
|
Bruck HA, Yang M, Kostov Y, Rasooly A. Electrical percolation based biosensors. Methods 2013; 63:282-9. [PMID: 24041756 PMCID: PMC3902888 DOI: 10.1016/j.ymeth.2013.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/28/2013] [Indexed: 01/29/2023] Open
Abstract
A new approach to label free biosensing has been developed based on the principle of "electrical percolation". In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-staphylococcal enterotoxin B (SEB) IgG as a "gate" and SEB as an "actuator", it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create "biological central processing units (CPUs)" with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously.
Collapse
Affiliation(s)
- Hugh Alan Bruck
- University of Maryland College Park (UMCP), College Park MD 20742
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083, China
| | | | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
- National Cancer Institute, Rockville, MD 20850
| |
Collapse
|
4
|
Ingrosso C, Bianco GV, Lopalco P, Tamborra M, Curri ML, Corcelli A, Bruno G, Agostiano A, Siciliano P, Striccoli M. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant. NANOSCALE 2012; 4:6434-6441. [PMID: 22961248 DOI: 10.1039/c2nr31999c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, single walled carbon nanotubes (SWNTs) have been chemically functionalized at their walls with a membrane protein, namely the mutated bacteriorhodopsin D96N, integrated in its native archaeal lipid membrane. The modification of the SWNT walls with the mutant has been carried out in different buffer solutions, at pH 5, 7.5 and 9, to investigate the anchoring process, the typical chemical and physical properties of the component materials being dependent on the pH. The SWNTs modified by interactions with bacteriorhodopsin membrane patches have been characterized by UV-vis steady state, Raman and attenuated total reflection Fourier transform infrared spectroscopy and by atomic force and transmission electron microscopy. The investigation shows that the membrane protein patches wrap the carbon walls by tight chemical interactions undergoing a conformational change; such chemical interactions increase the mechanical strength of the SWNTs and promote charge transfers which p-dope the nano-objects. The functionalization, as well as the SWNT doping, is favoured in acid and basic buffer conditions; such buffers make the nanotube walls more reactive, thus catalysing the anchoring of the membrane protein. The direct electron communication among the materials can be exploited for effectively interfacing the transport properties of carbon nanotubes with both molecular recognition capability and photoactivity of the cell membrane for sensing and photoconversion applications upon integration of the achieved hybrid materials in sensors or photovoltaic devices.
Collapse
Affiliation(s)
- Chiara Ingrosso
- CNR-IMM, Via per Monteroni, Campus Universitario, Palazzina A3, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu F, Li Y, Song C, Dong B, Liu Z, Zhang K, Li H, Sun Y, Wei Y, Yang A, Yang K, Jin B. Highly sensitive microplate chemiluminescence enzyme immunoassay for the determination of staphylococcal enterotoxin B based on a pair of specific monoclonal antibodies and its application to various matrices. Anal Chem 2011; 82:7758-65. [PMID: 20799707 DOI: 10.1021/ac101666y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A highly specific and sensitive microplate chemiluminescent enzyme immunoassay (CLEIA) was established and validated for the detection of staphylococcal enterotoxin B (SEB). A pair of monoclonal antibodies (mAbs) that recognizes different epitopes of SEB was selected from 20 SEB-specific mAbs, and the experimental conditions were examined and optimized for the development of the CLEIA. This method exhibited high performance with a dynamic range of 0.01-5 ng/mL, and the measured limit of detection (LOD) was 0.01 ng/mL. Intra- and interassay coefficient variations were all lower than 13% at three concentrations (0.2, 0.4, and 2 ng/mL). For specificity studies, when this method was applied to test staphylococcal enterotoxins A, C1, and D, no cross-reactivity was observed. It has been successfully applied to the analysis of SEB in a variety of environmental, biological and humoral matrices such as sewage, tap water, river water, roast beef, peanut butter, cured ham, 10% nonfat dry milk, milk, orange juice, and human urine and serum. The aim of this article is to show that the highly sensitive, specific, and simple microplate CLEIA, based on a pair of highly specific monoclonal antibodies, has potential applications for quantifying SEB in public health and military reconnaissance.
Collapse
Affiliation(s)
- Fei Liu
- Department of Immunology, The Fourth Military Medical University, No. 17 Changle West Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang M, Sun S, Bruck HA, Kostov Y, Rasooly A. Lab-on-a-chip for label free biological semiconductor analysis of staphylococcal enterotoxin B. LAB ON A CHIP 2010; 10:2534-2540. [PMID: 20668726 DOI: 10.1039/c005141a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a new lab-on-a-chip (LOC) which utilizes a biological semiconductor (BSC) transducer for label free analysis of Staphylococcal Enterotoxin B (SEB) (or other biological interactions) directly and electronically. BSCs are new transducers based on electrical percolation through a multi-layer carbon nanotube-antibody network. In BSCs the passage of current through the conductive network is dependent upon the continuity of the network. Molecular interactions within the network, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. For the fabrication of a BSC based detector, we combined several elements: (1) BSC transducers for direct detection, (2) LOC for flow through continuous measurements, (3) a digital multimeter with computer connection for data logging, (4) pumps and valves for fluid delivery, and (5) a computer for fluid delivery control and data analysis. Polymer lamination technology was used for the fabrication of a four layer LOC for BSC detection, the BSC on the chip is fabricated by immobilizing pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex directly on the PMMA surface of the LOC. SEB samples were loaded into the device using a peristaltic pump and the change in resistance resulting from antibody-antigen interactions was continuously monitored and recorded. Binding of SEB rapidly increases the BSC electrical resistance. SEB in buffer was assayed with limit of detection (LOD) of 5 ng mL(-1) at a signal to baseline (S/B) ratio of 2. A secondary antibody was used to verify the presence of the SEB captured on the surface of the BSC and for signal amplification. The new LOC system permits rapid detection and semi-automated operation of BSCs. Such an approach may enable the development of multiple biological elements "Biological Central Processing Units (CPUs)" for parallel processing and sorting out automatically information on multiple analytes simultaneously. Such an approach has potential use for point-of-care medical and environmental testing.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250, USA
| | | | | | | | | |
Collapse
|
8
|
Yang M, Sun S, Bruck HA, Kostov Y, Rasooly A. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB). Biosens Bioelectron 2010; 25:2573-8. [PMID: 20447819 PMCID: PMC2996829 DOI: 10.1016/j.bios.2010.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/20/2022]
Abstract
Electrical percolation-based biosensing is a new technology. This is the first report of an electrical percolation-based biosensor for real-time detection. The label-free biosensor is based on electrical percolation through a single-walled carbon nanotubes (SWNTs)-antibody complex that forms a network functioning as a "Biological Semiconductor" (BSC). The conductivity of a BSC is directly related to the number of contacts facilitated by the antibody-antigen "connectors" within the SWNT network. BSCs are fabricated by immobilizing a pre-functionalized SWNTs-antibody complex directly on a poly(methyl methacrylate) (PMMA) and polycarbonate (PC) surface. Each BSC is connected via silver electrodes to a computerized ohmmeter, thereby enabling a continuous electronic measurement of molecular interactions (e.g. antibody-antigen binding) via the change in resistance. Using anti-staphylococcal enterotoxin B (SEB) IgG to functionalize the BSC, we demonstrate that the biosensor was able to detect SEB at concentrations as low as 5 ng/mL at a signal to baseline (S/B) ratio of 2. Such measurements were performed on the chip in wet conditions. The actuation of the chip by SEB is immediate, permitting real-time signal measurements. In addition to this "direct" label-free detection mode, a secondary antibody can be used to "label" the target molecule bound to the BSC in a manner analogous to an immunological sandwich "indirect" detection-type assay. Although a secondary antibody is not needed for direct detection, the indirect mode of detection may be useful as an additional measurement to verify or amplify signals from direct detection in clinical, food safety and other critical assays. The BSC was used to measure SEB both in buffer and in milk, a complex matrix, demonstrating the potential of electrical percolation-based biosensors for real-time label-free multi-analyte detection in clinical and complex samples. Assembly of BSCs is simple enough that multiple sensors can be fabricated on the same chip, thereby creating "Biological Central Processing Units (BCPUs)" capable of parallel processing and sorting out information on multiple analytes simultaneously which may be used for complex analysis and for point of care diagnostics.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Steven Sun
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
| | - Hugh Alan Bruck
- University of Maryland College Park (UMCP), College Park MD 20742
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
- National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|