1
|
Wang Q, Wang Q, Zhu G, Sun L. Capillary Electrophoresis-Mass Spectrometry for Top-Down Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:125-147. [PMID: 39847747 PMCID: PMC12081194 DOI: 10.1146/annurev-anchem-071124-092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) characterizes proteoforms in cells, tissues, and biological fluids (e.g., human plasma) to better our understanding of protein function and to discover new protein biomarkers for disease diagnosis and therapeutic development. Separations of proteoforms with high peak capacity are needed due to the high complexity of biological samples. Capillary electrophoresis (CE)-MS has been recognized as a powerful analytical tool for protein analysis since the 1980s owing to its high separation efficiency and sensitivity of CE-MS for proteoforms. Here, we review benefits of CE-MS for advancing TDP, challenges and solutions of the method, and the main research areas in which CE-MS-based TDP can make significant contributions. We provide a brief perspective of CE-MS-based TDP moving forward.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Guijie Zhu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
2
|
Serrano LR, Mellors JS, Thompson JW, Lancaster NM, Robinson ML, Overmyer KA, Quarmby ST, Coon JJ. SPE-CZE-MS Quantifies Zeptomole Amounts of Phosphorylated Peptides. J Proteome Res 2025. [PMID: 40293921 DOI: 10.1021/acs.jproteome.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultralow-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis. Some challenges of coupling CZE analysis with mass spectrometry analysis (MS) of complex mixtures include 1. sensitivity due to volume loading limitations of CZE and 2. incompatibility of MS duty cycles with electropherographic time scales. Here, we address these two challenges as applied to single-cell-equivalent phosphoproteomics experiments by interfacing a microchip-based CZE device integrated with a solid-phase-extraction (SPE) bed with the Orbitrap Astral mass spectrometer. Using 225 phosphorylated peptide standards and phosphorylated peptide-enriched mouse brain tissue, we investigate microchip-based SPE-CZE functionality, quantitative performance, and complementarity to nano-LC-MS (nLC-MS) analysis. We highlight unique SPE-CZE separation mechanisms that can empower fit-for-purpose applications in single-cell-equivalent phosphoproteomics.
Collapse
Affiliation(s)
- Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J Scott Mellors
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - J Will Thompson
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Katherine A Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Scott T Quarmby
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
3
|
Colón Rosado J, Sun L. Solid-Phase Microextraction-Aided Capillary Zone Electrophoresis-Mass Spectrometry: Toward Bottom-Up Proteomics of Single Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1120-1127. [PMID: 38514245 PMCID: PMC11157658 DOI: 10.1021/jasms.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Capillary zone electrophoresis-mass spectrometry (CZE-MS) has been recognized as a valuable technique for the proteomics of mass-limited biological samples (i.e., single cells). However, its broad adoption for single cell proteomics (SCP) of human cells has been impeded by the low sample loading capacity of CZE, only allowing us to use less than 5% of the available peptide material for each measurement. Here we present a reversed-phase-based solid-phase microextraction (RP-SPME)-CZE-MS platform to solve the issue, paving the way for SCP of human cells using CZE-MS. The RP-SPME-CZE system was constructed in one fused silica capillary with zero dead volume for connection via in situ synthesis of a frit, followed by packing C8 beads into the capillary to form a roughly 2 mm long SPME section. Peptides captured by SPME were eluted with a buffer containing 30% (v/v) acetonitrile and 50 mM ammonium acetate (pH 6.5), followed by dynamic pH junction-based CZE-MS. The SPME-CZE-MS enabled the injection of nearly 40% of the available peptide sample for each measurement. The system identified 257 ± 24 proteins and 523 ± 69 peptides (N = 2) using a Q-Exactive HF mass spectrometer when only 0.25 ng of a commercial HeLa cell digest was available in the sample vial and 0.1 ng of the sample was injected. The amount of available peptide is equivalent to the protein mass of one HeLa cell. The data indicate that SPME-CZE-MS is ready for SCP of human cells.
Collapse
Affiliation(s)
- Jorge
A. Colón Rosado
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Song C, Ma Z, Zhang M, Liu C, Tang S, Zhang J, Song J, Yu H, Lee HK, Shen W. Multiplex Detection of Single Nucleotide Polymorphisms by Liquid Chromatography for Nonsmall Cell Lung Cancer Staging. Anal Chem 2024; 96:1054-1063. [PMID: 38190445 DOI: 10.1021/acs.analchem.3c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, an integrated strategy with excellent accuracy and high throughput is proposed for the precise indication of single nucleotide polymorphism (SNP) in nonsmall cell lung cancer diseases. Two types of point mutations (L858R and T790M) and the corresponding wild types could be identified together in a single high-performance liquid chromatographic run. Signal amplification was achieved through a series of enzyme ligation, primer extension, and enzyme cleavage strategies, and a large number of DNA probes with different fluorescence signals were finally generated. The factors affecting the spatiotemporal separation efficiency of four DNA probes were systematically investigated. The limits of detection of wild types (WTs) or mutant types (MTs) abbreviated as L858R-MT, L858R-WT, T790M-MT, and T790M-WT were 26, 24, 19, and 22 aM, respectively. In addition, the levels of mutant types and wild types in the serum of 40 nonsmall cell lung cancer patients at different stages were detected using the method, and the correlation between the mutation ratios and cancer stages was preliminarily verified. The proposed highly selective and sensitive method may serve as an alternative approach for early diagnosis and staging of nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Mengyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Juan Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| |
Collapse
|
5
|
Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, Xu T, Wang Q, Sun L. Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:617-642. [PMID: 34128246 PMCID: PMC8671558 DOI: 10.1002/mas.21714] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 05/06/2023]
Abstract
Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Aerts J, Andrén PE, Jansson ET. Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Anal Chem 2022; 95:1149-1158. [PMID: 36546842 PMCID: PMC9850406 DOI: 10.1021/acs.analchem.2c03893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, fast liquid chromatographic separations at low temperatures are exclusively used for the separation of peptides generated in hydrogen deuterium exchange (HDX) workflows. However, it has been suggested that capillary electrophoresis may be a better option for use with HDX. We performed in solution HDX on peptides and bovine hemoglobin (Hb) followed by quenching, pepsin digestion, and cold capillary electrophoretic separation coupled with mass spectrometry (MS) detection for benchmarking a laboratory-built HDX-MS platform. We found that capillaries with a neutral coating to eliminate electroosmotic flow and adsorptive processes provided fast separations with upper limit peak capacities surpassing 170. In contrast, uncoated capillaries achieved 30% higher deuterium retention for an angiotensin II peptide standard owing to faster separations but with only half the peak capacity of coated capillaries. Data obtained using two different separation conditions on peptic digests of Hb showed strong agreement of the relative deuterium uptake between methods. Processed data for denatured versus native Hb after deuterium labeling for the longest timepoint in this study (50,000 s) also showed agreement with subunit interaction sites determined by crystallographic methods. All proteomic data are available under DOI: 10.6019/PXD034245.
Collapse
Affiliation(s)
- Jordan
T. Aerts
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden,Science
for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala751 24, Sweden
| | - Erik T. Jansson
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden,
| |
Collapse
|
7
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Song C, Chen W, Kuang J, Yao Y, Tang S, Zhao Z, Guo X, Shen W, Lee HK. Recent advances in the detection of multiple microRNAs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line. Electrophoresis 2021; 42:735-741. [PMID: 33348443 DOI: 10.1002/elps.202000252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/05/2022]
Abstract
Host cell proteins (HCPs) are widely regarded as a critical quality attribute for a biotherapeutic product. Bottom up MS is the present gold standard for HCP analysis but suffers from incomplete protein identification due to complex nature of the HCP mixture and limited separation efficiency of the preceding LC-based systems. In this paper, we present for the first time an application involving use of LC-CE-MS/MS platform for analysis of HCPs. It has been demonstrated that the proposed platform has been able to successfully identify 397 HCPs from the supernatants of recombinant Chinese hamster ovary cells, twice and thrice the number of proteins identified by the state-of-the-art LC-MS/MS (189 HCPs) and CE-MS/MS (128 HCPs) analyses, respectively. Of these, 225 HCPs were unique to the LC-CE-MS/MS approach and were not identified by either LC-MS/MS or CE-MS/MS. It is observed that the LC-CE-MS/MS platform combines the benefits of LC-MS/MS and CE-MS/MS techniques and identifies peptides in a wider range of size, pI, and hydrophobicity. Additionally, LC-CE-MS/MS also identified more HCPs associated with cellular components, molecular functions, biological processes, peptidases, and secretory proteins. The proposed approach would thus be a useful addition in HCP analysis and secretome studies of mAb-producing Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohan L Shah
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A 2020; 1620:460954. [DOI: 10.1016/j.chroma.2020.460954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
11
|
He H, Tian M, Hu L, Yang L. Ultrasensitive determination of organotin compounds in plastic food packaging and edible oils by sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. Analyst 2020; 145:2286-2296. [PMID: 32003368 DOI: 10.1039/c9an02331c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The determination of trace-amount organotins in plastic food packaging materials is of great significance in food safety. However, due to the complexity of organotins and sample treatment processes, it is still a challenging task. Here, we report a method for the sensitive and simultaneous determination of organotins in plastic food packaging materials and edible oils, by utilizing sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. The method of sample pretreatment with ultrasonic extraction and solid phase extraction is used to eliminate interference. The results showed low limits of detection (LODs) of 2 pg mL-1-50 pg mL-1 and excellent inter/intra-day repeatability. Good average recoveries in the range of 80.27% to 108.52% were obtained at three spiked concentrations, with a relative standard deviation less than 8.71%. The successful simultaneous determination of the target analytes will pave the way for further assessment of contamination and migration behaviour of organotins from packaging materials to food, which is of great significance for evaluating and controlling food safety.
Collapse
Affiliation(s)
- Huiyu He
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China.
| | | | | | | |
Collapse
|
12
|
Cheng J, Morin GB, Chen DDY. Bottom‐up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE‐MS. Electrophoresis 2020; 41:370-378. [DOI: 10.1002/elps.201900452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Jianhui Cheng
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Agency Vancouver BC Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver BC Canada
| | - David D. Y. Chen
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| |
Collapse
|
13
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
Zhang F, Hong J, Xu W, Qu F. Straight nano-electrospray ionization and its coupling of mobility capillary electrophoresis to mass spectrometry. Talanta 2019; 206:120183. [PMID: 31514879 DOI: 10.1016/j.talanta.2019.120183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Mobility capillary electrophoresis (MCE) was developed previously in our group, which has the capabilities of ion separation and biomolecule hydrodynamic radius analysis. The coupling of MCE with mass spectrometry (MS) would greatly improve complex sample identification capability as well as system detection sensitivity. In the present study, a simple and robust ionization source, named as straight nano-electrospray ionization (nanoESI) source was developed, which was applied to couple MCE with MS. A stainless-steel needle attached directly at the end of an MCE capillary was used as the nanoESI emitter, and the connection between this emitter to the liquid flow in the MCE separation channel was established through a liquid bridge. After optimization, this straight nanoESI source enhanced the ion signal intensity by ~10 times when compared with a commercial nanoESI source. The MCE-straight nanoESI-MS system was also characterized in terms of mixture separation and peptide hydrodynamic radius measurements. Compared to our previous work when a UV detector was used in a commercial Lumex CE system (model Capel 105 M, St. Petersburg, Russia), peptides with much lower concentrations could be analyzed (from ~1 mg/mL to ~20 μg/mL) in terms of radius measurement.
Collapse
Affiliation(s)
- Fei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
15
|
|
16
|
Yang Z, Shen X, Chen D, Sun L. Microscale Reversed-Phase Liquid Chromatography/Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Deep and Highly Sensitive Bottom-Up Proteomics: Identification of 7500 Proteins with Five Micrograms of an MCF7 Proteome Digest. Anal Chem 2018; 90:10479-10486. [PMID: 30102516 PMCID: PMC6156779 DOI: 10.1021/acs.analchem.8b02466] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has been well recognized for bottom-up proteomics. It has approached 4000-8000 protein identifications (IDs) from a human cell line, mouse brains, or Xenopus embryos via coupling with liquid chromatography (LC) prefractionation. However, at least 500 μg of complex proteome digests were required for the LC/CZE-MS/MS studies. This requirement of a large amount of initial peptide material impedes the application of CZE-MS/MS for deep bottom-up proteomics of mass-limited samples. In this work, we coupled microscale reversed-phase LC (μRPLC)-based peptide prefractionation to dynamic pH-junction-based CZE-MS/MS for deep bottom-up proteomics of the MCF7 breast cancer cell proteome starting with only 5 μg of peptides. The dynamic pH-junction-based CZE enabled a 500 nL sample injection from as low as a 1.5 μL peptide sample, using up to 33% of the available peptide material for an analysis. Two kinds of μRPLC prefractionation were investigated, C18 ZipTip and nanoflow RPLC. C18 ZipTip/CZE-MS/MS identified 4453 proteins from 5 μg of the MCF7 proteome digest and showed good qualitative and quantitative reproducibility. Nanoflow RPLC/CZE-MS/MS produced over 7500 protein IDs and nearly 60 000 peptide IDs from the 5 μg of MCF7 proteome digest. The nanoflow RPLC/CZE-MS/MS platform reduced the required amount of complex proteome digests for LC/CZE-MS/MS-based deep bottom-up proteomics by 2 orders of magnitude. Our work provides the proteomics community with a powerful tool for deep and highly sensitive proteomics.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| |
Collapse
|
17
|
Yan X, Sun L, Zhu G, Cox OF, Dovichi NJ. Over 4100 protein identifications from a Xenopus laevis fertilized egg digest using reversed-phase chromatographic prefractionation followed by capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry analysis. Proteomics 2017; 16:2945-2952. [PMID: 27723263 DOI: 10.1002/pmic.201600262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100-min CZE-ESI-MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3-h UPLC-ESI-MS/MS separations (45 h total instrument time). CZE-MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC-MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.5 μg versus 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50-fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically pumped nanospray interface used in CZE. This report is the first comparison of CZE-MS/MS and UPLC-MS/MS for large-scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE-ESI-MS/MS approach those produced by UPLC-MS/MS, but with nearly two orders of magnitude lower sample amounts.
Collapse
Affiliation(s)
- Xiaojing Yan
- Department of Chemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Liangliang Sun
- Department of Chemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Guijie Zhu
- Department of Chemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Olivia F Cox
- Department of Chemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Norman J Dovichi
- Department of Chemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
18
|
Boley DA, Zhang Z, Dovichi NJ. Multisegment injections improve peptide identification rates in capillary zone electrophoresis-based bottom-up proteomics. J Chromatogr A 2017; 1523:123-126. [PMID: 28732593 DOI: 10.1016/j.chroma.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
While capillary zone electrophoresis (CZE) provides dramatically improved numbers of peptide identifications compared with reversed-phase chromatography for bottom-up proteomics of mass limited samples, CZE inevitably produces lower numbers of peptide identifications than RPLC for larger samples. One reason for this poorer performance is the dead time between injection of samples and subsequent appearance of the fastest moving component. This dead time is typically 25% of the separation window in CZE, but is only 5% of the separation window in gradient elution RPLC. This dead time can be eliminated in CZE by use of a multisegment injection mode where a series of samples is analyzed by injecting each sample while the preceding sample is still being separated. In this paper, we demonstrate that capillary zone electrophoresis employing sequential injections can produce a doubling in peptide identification rate with no degradation in separation efficiency.
Collapse
Affiliation(s)
- Danielle A Boley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
19
|
Mass Analyzers and Mass Spectrometers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:157-169. [DOI: 10.1007/978-3-319-41448-5_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Tycova A, Prikryl J, Foret F. Reproducible preparation of nanospray tips for capillary electrophoresis coupled to mass spectrometry using 3D printed grinding device. Electrophoresis 2015; 37:924-30. [PMID: 26626777 DOI: 10.1002/elps.201500467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023]
Abstract
The use of high quality fused silica capillary nanospray tips is critical for obtaining reliable and reproducible electrospray/MS data; however, reproducible laboratory preparation of such tips is a challenging task. In this work, we report on the design and construction of low-cost grinding device assembled from 3D printed and commercially easily available components. Detailed description and characterization of the grinding device is complemented by freely accessible files in stl and skp format allowing easy laboratory replication of the device. The process of sharpening is aimed at achieving maximal symmetricity, surface smoothness and repeatability of the conus shape. Moreover, the presented grinding device brings possibility to fabricate the nanospray tips of desired dimensions regardless of the commercial availability. On several samples of biological nature (reserpine, rabbit plasma, and the mixture of three aminoacids), performance of fabricated tips is shown on CE coupled to MS analysis. The special interest is paid to the effect of tip sharpness.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno, Czech Republic
| |
Collapse
|
21
|
Sun L, Zhu G, Yan X, Zhang Z, Wojcik R, Champion MM, Dovichi NJ. Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics 2015; 16:188-96. [PMID: 26508368 DOI: 10.1002/pmic.201500339] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/30/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022]
Abstract
Capillary zone electrophoresis (CZE) is emerging as a useful tool in proteomic analysis. Interest arises from dramatic improvements in performance that result from improvements in the background electrolyte used for the separation, the incorporation of advanced sample injection methods, the development of robust and sensitive electrospray interfaces, and the coupling with Orbitrap mass spectrometers with high resolution and sensitivity. The combination of these technologies produces performance that is rapidly approaching the performance of UPLC-based methods for microgram samples and exceeds the performance of UPLC-based methods for mid- to low nanogram samples. These systems now produce over 10 000 peptide IDs in a single 100-min analysis of the HeLa proteome.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Roza Wojcik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
22
|
Alexandrou LD, Spencer MJS, Morrison PD, Meehan BJ, Jones OAH. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:210-214. [PMID: 25625633 DOI: 10.1016/j.scitotenv.2015.01.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications.
Collapse
Affiliation(s)
- Lydon D Alexandrou
- Australian Centre for Research on Separation Science (ACROSS), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Michelle J S Spencer
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Paul D Morrison
- Australian Centre for Research on Separation Science (ACROSS), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Barry J Meehan
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| |
Collapse
|
23
|
Kohl FJ, Sánchez-Hernández L, Neusüß C. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications. Electrophoresis 2014; 36:144-58. [DOI: 10.1002/elps.201400368] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Felix J. Kohl
- Department of Chemistry; Aalen University; Aalen Germany
| | | | | |
Collapse
|
24
|
Link AJ, Washburn MP. Analysis of protein composition using multidimensional chromatography and mass spectrometry. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 78:23.1.1-23.1.25. [PMID: 25367006 DOI: 10.1002/0471140864.ps2301s78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.
Collapse
Affiliation(s)
- Andrew J Link
- Vanderbilt University School of Medicine Nashville, Tennessee
| | | |
Collapse
|
25
|
Kler PA, Sydes D, Huhn C. Column–coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem 2014; 407:119-38. [DOI: 10.1007/s00216-014-8099-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
26
|
Sun L, Zhu G, Mou S, Zhao Y, Champion MM, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line. J Chromatogr A 2014; 1359:303-8. [PMID: 25082526 DOI: 10.1016/j.chroma.2014.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
We coupled capillary zone electrophoresis (CZE) with an ultrasensitive electrokinetically pumped nanospray ionization source for tandem mass spectrometry (MS/MS) analysis of complex proteomes. We first used the system for the parallel reaction monitoring (PRM) analysis of angiotensin II spiked in 0.45mg/mL of bovine serum albumin (BSA) digest. A calibration curve was generated between the loading amount of angiotensin II and intensity of angiotensin II fragment ions. CZE-PRM generated a linear calibration curve across over 4.5 orders of magnitude dynamic range corresponding to angiotensin II loading amount from 2amole to 150fmole. The relative standard deviations (RSDs) of migration time were <4% and the RSDs of fragment ion intensity were ∼20% or less except 150fmole angiotensin II loading amount data (∼36% RSD). We further applied the system for the first bottom up proteomic analysis of a human cell line using CZE-MS/MS. We generated 283 protein identifications from a 1h long, single-shot CZE MS/MS analysis of the MCF7 breast cancer cell line digest, corresponding to ∼80ng loading amount. The MCF7 digest was fractionated using a C18 solid phase extraction column; single-shot analysis of a single fraction resulted in 468 protein identifications, which is by far the largest number of protein identifications reported for a mammalian proteomic sample using CZE.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
27
|
Zhu G, Sun L, Yan X, Dovichi NJ. Bottom-up proteomics of Escherichia coli using dynamic pH junction preconcentration and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem 2014; 86:6331-6. [PMID: 24852005 PMCID: PMC4082393 DOI: 10.1021/ac5004486] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report the use of the dynamic
pH junction based capillary zone
electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS)
for bottom-up proteomics with an electrokinetically pumped sheath-flow
nanospray capillary electrophoresis-mass spectrometry (CE-MS) interface
and both LTQ-XL and LTQ-Orbitrap-Velos mass spectrometers. Conventional
injection of 20 nL of a 1 mg/mL BSA digest identified 37 peptides
and produced 66% sequence coverage. In contrast, pH junction injection
of 130 nL (or larger) of a 0.05 mg/mL BSA digest identified 40 peptides
and produced 70% coverage using a pH 6.5 sample buffer and the LTQ.
A 20 nL conventional injection of a 1 mg/mL Escherichia coli digest identified 508 peptides and 199 proteins with the LTQ. A
400 nL pH junction injection of a 0.1 mg/mL E. coli digest identified 527 peptides and 179 proteins with the LTQ. Triplicate
technical replicates of a 0.01 mg/mL sample with 400-nL injection
volume using a pH junction identified 288 ± 9 peptides and 121
± 5 proteins with the LTQ. There was outstanding concordance
in migration time between the pH junction and normal injection. The
pH junction produced narrower peaks and significant concentration
for all but the most acidic components in the sample. Compared with
the conventional stacking method, the pH junction method can generate
comparable performance for small injection volume (20 nL) and significantly
better concentration performance for a large injection volume (200
nL). We also applied the pH junction to three intact standard proteins
and observed a >10× increase in peak intensity compared to
conventional
injection.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
28
|
Sun L, Zhu G, Yan X, Champion MM, Dovichi NJ. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface. Proteomics 2014; 14:622-8. [PMID: 24277677 PMCID: PMC3947435 DOI: 10.1002/pmic.201300295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/18/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of proteomic studies employ RP-HPLC coupled with MS/MS for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These studies usually require milligrams to micrograms of starting material. CZE provides an interesting alternative separation method based on a different separation mechanism than HPLC. CE received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. CZE coupled with this interface and these detectors provides single shot detection of >1250 peptides from an Escherichia coli digest in less than 1 h, identification of nearly 5000 peptides from analysis of seven fractions produced by SPE of the E. coli digest in a 6 h total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
29
|
Medina-Casanellas S, Domínguez-Vega E, Benavente F, Sanz-Nebot V, Somsen GW, de Jong GJ. Low-picomolar analysis of peptides by on-line coupling of fritless solid-phase extraction to sheathless capillary electrophoresis-mass spectrometry. J Chromatogr A 2013; 1328:1-6. [PMID: 24438833 DOI: 10.1016/j.chroma.2013.12.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 01/01/2023]
Abstract
A novel fritless solid-phase extraction (SPE) microcartridge was designed for combination with sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) employing a prototype porous-tip capillary for nanoelectrospray ionization (nanoESI). The inlet of the separation capillary (30μm inner diameter (id), 150μm outer diameter (od)) was inserted in a 4mm long SPE microcartridge (150μm id, 365μm od) packed with a C18 sorbent of 55-105μm particle size. Performance of the SPE-CE-MS system was evaluated using diluted solutions of the three opioid peptides dynorphin A (1-7) (DynA), endomorphin 1 (End1) and met-enkephalin (Met). Sample volumes of 1.5μL were loaded on the SPE microcartridge and the retained peptides were eluted with 22nL of an acidic methanol/water (60:40, v/v) solution. Using a pressure of 50mbar during separation to speed up the analysis, good peptide resolution was obtained with acceptable plate numbers (between 53,000 and 92,000). Intraday relative standard deviations (% RSD) for peptide migration times and peak areas were below 4% and 9%, respectively. The SPE-CE-MS method showed good linearity in the 0.05-5ngmL(-1) range and limits of detection (LODs) were 10pgmL(-1). However, loading a larger volume of sample (8μL), LODs could be decreased down to 2pgmL(-1) (2.2-3.5pM). This represents an improvement of up to 5000-fold with respect to the LODs achieved by sheathless CE-MS without on-line preconcentration demonstrating the potential of on-line SPE for further enhancing sensitivity.
Collapse
Affiliation(s)
- Silvia Medina-Casanellas
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain; Biomolecular Analysis, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Elena Domínguez-Vega
- Biomolecular Analysis, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Fernando Benavente
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Govert W Somsen
- Biomolecular Analysis, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands; AIMMS Division of BioAnalytical Chemistry, VU University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
30
|
Jooß K, Sommer J, Bunz SC, Neusüß C. In-line SPE-CE using a fritless bead string design-Application for the analysis of organic sulfonates including inline SPE-CE-MS for APTS-labeled glycans. Electrophoresis 2013; 35:1236-43. [DOI: 10.1002/elps.201300388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin Jooß
- Faculty of Chemistry; Aalen University; Aalen Germany
| | | | | | | |
Collapse
|
31
|
Park SG, Murray KK. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1673-1680. [PMID: 23821560 DOI: 10.1002/rcm.6618] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Ambient laser ablation with mass spectrometric detection is a powerful method for direct analysis of biological samples in their native environment. Capillary electrophoresis (CE) can separate complex mixtures of biological molecules prior to mass spectrometry (MS) analysis and an ambient sampling interface for CE/MS will allow the detection of minor components. METHODS An infrared (IR) laser ablated and transferred sample materials under ambient conditions for direct loading onto the CE separation column. Samples were deposited on a transparent target and ablated in transmission geometry using a pulsed mid-IR laser. The ablated materials were captured in the exposed sampling solvent and then loaded into a capillary by electrokinetic injection for separation and analysis by electrospray ionization (ESI)-MS. RESULTS The system was tested using mixtures of peptide and protein standards. It is estimated that tens of fmol of material was transferred from the ablation target for injection into the CE system and the theoretical plate number was between 1000 and 3000. CONCLUSIONS A novel interface for ambient sampling to CE/MS was developed. The interface is generally applicable and has potential utility for mass spectrometry imaging as well as the loading of microfluidic devices from untreated ambient samples.
Collapse
Affiliation(s)
- Sung-Gun Park
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
32
|
Wang C, Lee CS, Smith RD, Tang K. Capillary isotachophoresis-nanoelectrospray ionization-selected reaction monitoring MS via a novel sheathless interface for high sensitivity sample quantification. Anal Chem 2013; 85:7308-15. [PMID: 23789856 PMCID: PMC3744340 DOI: 10.1021/ac401202c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel sheathless capillary isotachophoresis (CITP/CZE)-mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.d. porous electrospray ionization (ESI) emitter was developed in this study to simultaneously achieve large sample loading capacity and stable nanoESI operation. Crucial operating parameters, including sample loading volume, flow rate, and separation window, were systematically investigated to attain optimum CITP/CZE separation efficiency and MS detection sensitivity. The performance of CITP/CZE-nanoESI-MS using the new sheathless interface was evaluated for its achievable low limit of quantification (LOQ) by analyzing targeted peptides, leu-enkephalin and angiotensin II, spiked in a BSA tryptic digest matrix at different concentrations. A linear dynamic range spanning 4.5 orders of magnitude and a 10 pM LOQ with measurement reproducibility of the CV < 22% were obtained experimentally for both targeted peptides, representing a 5-fold sensitivity improvement as compared to using the sheath liquid interface developed previously.1.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Cheng S. Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
33
|
Yan X, Essaka DC, Sun L, Zhu G, Dovichi NJ. Bottom-up proteome analysis of E. coli using capillary zone electrophoresis-tandem mass spectrometry with an electrokinetic sheath-flow electrospray interface. Proteomics 2013; 13:2546-51. [PMID: 23798545 DOI: 10.1002/pmic.201300062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 01/15/2023]
Abstract
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE-ESI-MS/MS. The separation was performed in a 60-cm-long linear polyacrylamide-coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath-flow electrospray interface was used to couple the separation capillary with an Orbitrap-Velos operating in higher-energy collisional dissociation mode. Each CZE-ESI-MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom-up analysis of prokaryote proteomes.
Collapse
Affiliation(s)
- Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
34
|
Hua Y, Jemere AB, Dragoljic J, Harrison DJ. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics. LAB ON A CHIP 2013; 13:2651-9. [PMID: 23712291 DOI: 10.1039/c3lc50401h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.
Collapse
Affiliation(s)
- Yujuan Hua
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | | | |
Collapse
|
35
|
Gasilova N, Qiao L, Momotenko D, Pourhaghighi MR, Girault HH. Microchip emitter for solid-phase extraction-gradient elution-mass spectrometry. Anal Chem 2013; 85:6254-63. [PMID: 23730778 DOI: 10.1021/ac400171e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A microchip electrospray emitter with a magnetic bead trap has been designed for solid-phase extraction-gradient elution-mass spectrometry (SPE-GEMS). The goal of this method is the detection of analytes at low concentrations and it is here demonstrated using reverse phase coated magnetic beads (Mbs) for the preconcentration and detection of the peptides. The sample is passed through the chip, and the peptides are retained and enriched in the trap. After washing, the peptides are released sequentially by stepwise gradient elution and electrosprayed for mass spectrometry analysis. This approach allows effective sample desalting, enrichment, sequential elution, and MS detection without the introduction of an additional separation step after SPE. Efficient preconcentration of model peptides by SPE and sequential release and analysis of peptides by GEMS were demonstrated for diluted sample solutions within the range of 1 μM to 10 nM. Fortified human blood serum, protein digest and fractions collected after protein digest OFFGEL separation were analyzed by SPE-GEMS allowing the detection of low abundance peptides usually not observed by direct mass spectrometry analysis. A mathematical model for gradient elution is proposed.
Collapse
Affiliation(s)
- Natalia Gasilova
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Zhu G, Sun L, Yan X, Dovichi NJ. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1250 Escherichia coli peptide identifications in a 50 min separation. Anal Chem 2013; 85:2569-73. [PMID: 23394296 DOI: 10.1021/ac303750g] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Capillary zone electrophoresis (CZE)-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was optimized and applied for analysis of 1-100 ng Escherichia coli protein digests in a single run (single-shot analysis). The system employed an electrokinetically pumped nanospray interface, a coated capillary, and stacking conditions for sample injection. More than 1 250 peptides were identified by optimized single-shot CZE-ESI-MS/MS with 100 ng digest loaded and 50 min analysis time. When 10 ng and 1 ng digests were loaded, about 1 000 and 600 peptides were identified in a single-shot analysis, respectively. Compared with single-shot ultraperformance liquid chromatography (UPLC)-ESI-MS/MS, CZE-ESI-MS/MS produced fewer peptide IDs (1 377 ± 128 vs 1 875 ± 32) for large sample loading amounts (100 ng) with the same mass spectrometer time (50 min). However, when the loaded digest was mass limited (1 ng), CZE-ESI-MS/MS generated many more peptide identifications than UPLC-ESI-MS/MS (627 ± 38 vs 342 ± 113). In addition, CZE-ESI-MS/MS and UPLC-ESI -MS/MS provided complementary peptide level identifications. These results suggest that CZE-ESI-MS/MS may be useful for large-scale, comprehensive, and confident proteomics analysis.
Collapse
|
37
|
Bonvin G, Schappler J, Rudaz S. Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: Fundamental concepts and technical developments. J Chromatogr A 2012; 1267:17-31. [DOI: 10.1016/j.chroma.2012.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/24/2023]
|
38
|
Jeong JS, Kim SK, Park SR. Capillary electrophoresis mass spectrometry with sheathless electrospray ionization for high sensitivity analysis of underivatized amino acids. Electrophoresis 2012; 33:2112-21. [PMID: 22821486 DOI: 10.1002/elps.201200005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A high durability sheathless electrospray ionization interface of CE-MS is applied for the sensitive analysis of underivatized amino acids. The sheathless interface was realized using an ionophore membrane-packed electro-conduction channel. The interface functioned well with a volatile alkaline background electrolyte (BGE) and uncoated fused-silica capillaries for CE-MS analysis of underivatized amino acids. High electroosmotic flow with alkaline BGE facilitated high separation efficiency (>100,000 theoretical plates) and short analysis time (<15 min). Both the short-term stability and long-term durability are particularly suited for routine applications. Using electrokinetic injection and the multiple reaction monitoring (MRM) mode with a triple-quadrupole analyzer, high sensitivity was achieved, which yielded detection limits of 0.05-0.81 μM. For the quantitation of underivatized amino acids, quantification precisions (RSDs) for intra- and inter-day analyses were less than 3%. Recoveries from serum were 96.3-101.8% for isotope dilution mass spectrometry (IDMS). When compared with HPLC-IDMS for human serum samples, highly agreeable (96.9-102.0%) results were obtained with the proposed CE-IDMS method.
Collapse
Affiliation(s)
- Ji-Seon Jeong
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | | | | |
Collapse
|
39
|
Wang Y, Fonslow BR, Wong CCL, Nakorchevsky A, Yates JR. Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal Chem 2012; 84:8505-13. [PMID: 23004022 DOI: 10.1021/ac301091m] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a solid phase microextraction (SPME), multistep elution, transient isotachophoresis (tITP) capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) procedure which employs a high sensitivity porous electrospray ionization (ESI) sprayer for the proteomic analysis of a moderately complex protein mixture. In order to improve comprehensiveness and sensitivity over a previously reported proteomic application of the ESI sprayer, we evaluated preconcentration with SPME and multistep elution prior to tITP stacking and CE separation. To maximize separation efficiency, we primarily employed electrokinetic methods for elution and separation after loading the sample by application of pressure. Conditions were developed for optimum simultaneous electrokinetic elution and sample stacking using a tryptic digest of 16 proteins to maximize peptide identifications and minimize band broadening. We performed comparative proteomic analysis of a dilution series using CE and nanoflow liquid chromatography (nLC). We found complementary peptide and protein identifications with larger quantities (100 ng) of a Pyrococcus furiosus tryptic digest, but with mass-limited amounts (5 ng) CE was 3 times more effective at identifying proteins. We attribute these gains in sensitivity to lower noise levels with the porous CE sprayer, illustrated by better signal-to-noise ratios of peptide precursor ions and associated higher XCorr values of identified peptides when compared directly to nLC. From comparative analysis of SPME-tITP-CE with direct injection CE, the SPME-tITP process improved comprehensiveness and sensitivity.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
40
|
Wick CH, Elashvili I, Stanford MF, McCubbin PE, Deshpande SV, Kuzmanovic D, Jabbour RE. Mass Spectrometry and Integrated Virus Detection System Characterization of MS2 Bacteriophage. Toxicol Mech Methods 2012; 17:241-54. [PMID: 20020947 DOI: 10.1080/15376510601123195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ABSTRACT In this study, we demonstrate the effect of sample matrix composition of MS2 virus on its characterization by ESI-MS and IVDS. MS2 samples grown and purified using various techniques showed different responses on ESI-MS than that on IVDS. The LC-MS of the specific biomarker of MS2 bacteriophage from an infected Escherichia coli sample was characterized by the presence of E. coli proteins. The significant impact of sample matrix was observed upon identification of MS2 using a database search. Infected E. coli with MS2 showed a matching score indifferent from uninfected ones. Only purified MS2, using CsCl and analyzed by LS-MS, showed a positive match using the database search. However, the variation in MS2 sample matrix had no effect on the deification of MS2.
Collapse
Affiliation(s)
- Charles H Wick
- Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang Z, Jemere AB, Jed Harrison D. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices. Electrophoresis 2012; 33:3151-8. [DOI: 10.1002/elps.201200286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Wang
- Department of Chemistry; University of Alberta; Edmonton; AB; Canada
| | - Abebaw B. Jemere
- National Institute for Nanotechnology; National Research Council Canada; Edmonton; AB; Canada
| | | |
Collapse
|
42
|
Li Y, Champion MM, Sun L, DiGiuseppe Champion PA, Wojcik R, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem 2012; 84:1617-22. [PMID: 22182061 PMCID: PMC3277681 DOI: 10.1021/ac202899p] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We demonstrate the use of capillary zone electrophoresis with an electrokinetically pumped sheath-flow electrospray interface for the analysis of a tryptic digest of a sample of intermediate protein complexity, the secreted protein fraction of Mycobacterium marinum. For electrophoretic analysis, 11 fractions were generated from the sample using reverse-phase liquid chromatography; each fraction was analyzed by CZE-ESI-MS/MS, and 334 peptides corresponding to 140 proteins were identified in 165 min of mass spectrometer time at 95% confidence (FDR < 0.15%). In comparison, 388 peptides corresponding to 134 proteins were identified in 180 min of mass spectrometer time by triplicate UPLC-ESI-MS/MS analyses, each using 250 ng of the unfractionated peptide mixture, at 95% confidence (FDR < 0.15%). Overall, 62% of peptides identified in CZE-ESI-MS/MS and 67% in UPLC-ESI-MS/MS were unique. CZE-ESI-MS/MS favored basic and hydrophilic peptides with low molecular masses. Combining the two data sets increased the number of unique peptides by 53%. Our approach identified more than twice as many proteins as the previous record for capillary electrophoresis proteome analysis. CE-ESI-MS/MS is a useful tool for the analysis of proteome samples of intermediate complexity.
Collapse
Affiliation(s)
- Yihan Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
- Department of Chemistry, University of Washington, Seattle WA USA 98195
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | | | - Roza Wojcik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| |
Collapse
|
43
|
Lee WH, Wang CW, Her GR. Staggered multistep elution solid-phase extraction capillary electrophoresis/tandem mass spectrometry: a high-throughput approach in protein analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2124-2130. [PMID: 21710592 DOI: 10.1002/rcm.5091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.
Collapse
Affiliation(s)
- Wei-Han Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
44
|
Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW. Performance of a sheathless porous tip sprayer for capillary electrophoresis–electrospray ionization-mass spectrometry of intact proteins. J Chromatogr A 2010; 1217:7605-11. [DOI: 10.1016/j.chroma.2010.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/26/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022]
|
45
|
Mbeunkui F, Scholl EH, Opperman CH, Goshe MB, Bird DM. Proteomic and Bioinformatic Analysis of the Root-Knot Nematode Meloidogyne hapla: The Basis for Plant Parasitism. J Proteome Res 2010; 9:5370-81. [DOI: 10.1021/pr1006069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Flaubert Mbeunkui
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Elizabeth H. Scholl
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Charles H. Opperman
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - David McK. Bird
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| |
Collapse
|
46
|
Callipo L, Capriotti AL, Cavaliere C, Gubbiotti R, Samperi R, Laganà A. Evaluation of different two-dimensional chromatographic techniques for proteomic analysis of mouse cardiac tissue. Biomed Chromatogr 2010; 25:594-9. [PMID: 20652868 DOI: 10.1002/bmc.1487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/24/2010] [Accepted: 06/02/2010] [Indexed: 11/09/2022]
Abstract
In proteomics experiments the first critical step after sampling is certainly sample preparation. Multidimensional chromatography techniques have emerged as a powerful tool for the large-scale analysis of such complex samples as biological samples. In order to evaluate these separation techniques, microgram quantities of protein extracted from mouse heart tissue were fractionated by four different chromatographic methods. Regarding peptide-level fractionation, the first dimension of separation was performed with high-pH reversed-phase chromatography (pH-RP) and strong cation exchange chromatography (SCX). Regarding protein-level fractionation, C(8) protein reversed-phase (C(8) -RP Prot) and high-recovery protein reversed-phase (hr-RP Prot) were used instead. The second dimension consisted of a reversed-phase nano-HPLC on-Chip coupled to an electrospray ionization quadrupole time-of-flight mass spectrometer for tandem mass spectrometric analysis. The performance and relative fractionation efficiencies of each technique were assessed by comparing the total number of proteins identified by each method. The peptide-level pH-RP and the hr-RP Prot protein-level separations were the best methods, identifying 1338 and 1303 proteins, respectively. The peptide-level SCX, with 509 proteins identified, was the worst method.
Collapse
Affiliation(s)
- Luciano Callipo
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Ahmed FE. The role of capillary electrophoresis–mass spectrometry to proteome analysis and biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1963-81. [DOI: 10.1016/j.jchromb.2009.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 04/24/2009] [Accepted: 05/10/2009] [Indexed: 01/25/2023]
|
48
|
Kumar A, Malik AK. A Review on the Hyphenation of Solid Phase Microextraction with Capillary Electrophoresis and Mass Spectrometry. Crit Rev Anal Chem 2009. [DOI: 10.1080/15389580802570192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Lee WH, Her GR. The development of a two-leveled two cross interface for on-line coupling solid-phase extraction and capillary electrophoresis-mass spectrometry. Electrophoresis 2009; 30:1675-83. [DOI: 10.1002/elps.200800709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Shi LH, Jin YX, Moon DC, Kim SK, Park SR. A sheathless CE/ESI-MS interface with an ionophore membrane-packed electro-conduction channel. Electrophoresis 2009; 30:1661-9. [DOI: 10.1002/elps.200800664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|