1
|
De Silva M, Dunn RC. Sample plug induced peak splitting in capillary electrophoresis studied using dual backscattered interferometry and fluorescence detection. Electrophoresis 2023; 44:549-557. [PMID: 36641782 DOI: 10.1002/elps.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023]
Abstract
The appearance of unexpected peaks in capillary electrophoresis (CE) is common and can lengthen the time of method development as assay conditions and experimental parameters are varied to understand and mitigate the effects of the additional peaks. Additional peaks can arise when a single-analyte zone is split into multiple zones. Understanding the underlying mechanism of these phenomena, recognizing conditions that favor its presence, and knowing how to confirm and eliminate the effect are important for efficient method optimization. In this study, we examine how the overlap of analyte zones with the sample plug can lead to peak splitting. This is explored experimentally using dual detection CE, which enables both the sample plug and analyte zones to be independently and simultaneously measured from the same detection volume. Simulations performed via COMSOL Multiphysics confirm the origin of the splitting and help guide experiments to reduce and eliminate the effect. Our findings show that this peak splitting mechanism can arise in separations of both small and large molecules but is, especially, prevalent in separations of slowly migrating macromolecules. This effect is also more prevalent when using a short length-to-detector, as is commonly found in microfluidic applications. A simple diffusion-less model is introduced to develop strategies for reducing peak splitting that avoids modifying the apparatus, such as by lengthening the separation length, which can be difficult. Decreasing the sample plug length and slowing the electroosmotic flow can both reduce this effect, which is confirmed experimentally.
Collapse
Affiliation(s)
- Miyuru De Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
2
|
Tan SJ, Yu KH, Ismail MA, Teoh YH. Enhanced liquid mixing in T‐mixer having staggered fins. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sak Jie Tan
- School of Mechanical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang Malaysia
| | - Kok Hwa Yu
- School of Mechanical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang Malaysia
| | - Mohd Azmi Ismail
- School of Mechanical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang Malaysia
| | - Yew Heng Teoh
- School of Mechanical Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Penang Malaysia
| |
Collapse
|
3
|
A simple and highly sensitive masking fluorescence detection system for capillary array electrophoresis and its application to food and medicine analysis. J Chromatogr A 2020; 1620:460968. [PMID: 32087880 DOI: 10.1016/j.chroma.2020.460968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
A high sampling rate, good stability, high throughput masking fluorescence detection system with easy positioning of each channel for capillary array electrophoresis was prepared and studied. A special mask combined with convex lenses was designed to modulate signals, without using any extra device to position each channel. The signal of each channel was detected by a photomultiplier tube, classified and saved by software. The design was used to evidently reduce the rotational vibration of optical components and to stabilize the system, so a high sampling rate was obtained by increasing the DC motor speed. To improve the optical system, optical fibers instead of conventional bulky optical components were used to transmit optical signal and to collect fluorescences in multiple directions, which greatly raised the sensitivity. Other important parameters including sampling rate, rotating speed and driven voltage laser diode (LDs) have also been investigated. Under optimal conditions, the performance of the detection system was evaluated. This novel system had a well-designed structure, and allowed independent multiple capillary operations and easy microanalysis. Its limit of detection for rhodamine 6G was 2.0 × 10-2 µg/mL.
Collapse
|
4
|
Wang X, Liu Z, Fan F, Hou Y, Yang H, Meng X, Zhang Y, Ren F. Microfluidic chip and its application in autophagy detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Li G, Wang S, Zhu Z, Chen A, Liu S. Cam-based vibration-counter-balanced laser-induced fluorescence scanner for multiplexed capillary detection. Talanta 2019; 198:398-403. [PMID: 30876578 DOI: 10.1016/j.talanta.2019.01.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/15/2022]
Abstract
Laser-induced fluorescence (LIF) rotary scanners have been successfully used for multiplexed capillary detection. However, these scanners have a limitation that the capillaries have to be assembled in a circular format, which can be inconvenient for certain applications. A linear LIF scanner works well for flat parallel capillary arrays, but motor accelerations/decelerations (for direction changes) and scanning head vibrations introduce high instrumental noises. The number of capillaries that can be scanned by a linear scanner is limited because of the above constraints. We have constructed a cam-based scanner in an attempt to address these issues. A cam-based scanner eliminates the motor accelerations/decelerations but not the scanning head vibrations. In this work, we attach a second scanning head to the cam on the opposite side of the first scanning head to counter-balance the mechanical vibrations. With this modification, we improve the limit of detection by more than 3 times (from 69 pM to 20 pM fluorescein). We also increase the capillary number capacity by more than 6 times; the total number of capillaries that can be scanned is 426 if 150-μm-o.d. capillaries are used or 320 if 200-μm-o.d. capillaries are used. To demonstrate the utility of this instrument, we assemble a 99-capillary array on one capillary holder and perform capillary electrophoresis of two fluorescent dyes; separations in all capillaries are successfully monitored simultaneously. We also apply it for detecting fluorescently labeled proteins resolved by 24 s-dimension capillaries in a chip-capillary hybrid device; two-dimensional separation results are nicely produced.
Collapse
Affiliation(s)
- Guanbin Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Shili Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; PURSPEC Technologies Inc., 1 E. Zhongguancun Road, Beijing 100084, PR China
| | - Zaifang Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; AB Sciex LLC, Brea, CA 92821, USA
| | - Apeng Chen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
6
|
Fast high-throughput screening of glutathione S-transferase polymorphism by voltage programming-based multi-channel microchip electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:10-17. [DOI: 10.1016/j.jchromb.2018.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023]
|
7
|
Cao L, Zhang Q, Dai H, Fu Y, Li Y. Separation/Concentration-signal-amplification in-One Method Based on Electrochemical Conversion of Magnetic Nanoparticles for Electrochemical Biosensing. ELECTROANAL 2018. [DOI: 10.1002/elan.201700653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lulu Cao
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Huang Dai
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
- Department of Biological and Agricultural Engineering; University of Arkansas; Fayetteville, AR 72701 USA
| |
Collapse
|
8
|
Sun Y, Woo N, Kim SK, Kang SH. Fast High-Throughput Screening of Alzheimer's Disease by Direct Apolipoprotein E Genotyping-based Multichannel Microchip Electrophoresis. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yucheng Sun
- Department of Chemistry; Graduate School, Kyung Hee University; Gyeonggi-do 17104 Republic of Korea
| | - Nain Woo
- Department of Chemistry; Graduate School, Kyung Hee University; Gyeonggi-do 17104 Republic of Korea
| | - Su-Kang Kim
- Kohwang Medical Research Institute, School of Medicine; Kyung Hee University; Seoul 130701 Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry; Graduate School, Kyung Hee University; Gyeonggi-do 17104 Republic of Korea
- Department of Applied Chemistry and Institute of Natural Sciences; Kyung Hee University; Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
9
|
Ha JW. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7495348. [PMID: 28326222 PMCID: PMC5343277 DOI: 10.1155/2017/7495348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS) microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI) technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE) separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.
Collapse
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
10
|
Sun Y, Kim SK, Zhang P, Woo N, Kang SH. Fast high-throughput screening of angiotensin-converting enzyme insertion/deletion polymorphism by variable programmed electric field strength-based microchip electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:77-85. [PMID: 27322633 DOI: 10.1016/j.jchromb.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/28/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
Abstract
An insertion (I)/deletion (D) polymorphism in angiotensin-converting enzyme (ACE) has been associated with susceptibility to various diseases in numerous studies. Traditionally, slab gel electrophoresis (SGE) after polymerase chain reaction (PCR) has been used to genotype this ACE I/D polymorphism. In this study, single- and multi-channel microchip electrophoresis (ME) methods based on variable programmed electric field strength (PEFS) (i.e., low constant, high constant, (+)/(-) staircase, and random electric field strengths) were developed for fast high-throughput screening of this specific polymorphism. The optimum PEFS conditions were set as 470V/cm for 0-9s, 129V/cm for 9-13s, 470V/cm for 13-13.9s, 294V/cm for 13.9-16s, and 470V/cm for 16-20s for single-channel ME, and 615V/cm for 0-22.5s, 231V/cm for 22.5-28.5s, and 615V/cm for 28.5-40s for multi-channel ME, respectively. In the multi-channel PEFS-ME, target ACE I/D polymorphism DNA fragments (D=190bp and I=490bp) were identified within 25s without loss of resolving power, which was ∼300 times faster than conventional SGE. In addition, PCR products of the ACE gene from human blood samples were detected after only 10 cycles by multi-channel PEFS-ME, but not by SGE. This parallel detection multichannel-based PEFS-ME method offers a powerful tool for fast high-throughput ACE I/D polymorphism screening with high sensitivity.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Su-Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Peng Zhang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Nain Woo
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
11
|
|
12
|
Ha JW, Hahn JH. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography. Anal Chem 2016; 88:4629-34. [DOI: 10.1021/acs.analchem.6b00789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan, 44610, South Korea
| | - Jong Hoon Hahn
- Department of Chemistry,
BioNanotechnology Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|
13
|
High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. J Mol Med (Berl) 2016; 94:1015-24. [PMID: 27030170 DOI: 10.1007/s00109-016-1407-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Utilizing a polymorphism ratio sequencing platform, we performed a complete somatic mutation analysis of the mitochondrial D-loop region in 14 urothelial cell carcinomas. A total of 28 somatic mutations, all heteroplasmic, were detected in 8 of 14 individuals (57.1 %). Insertion/deletion changes in unstable mono- and dinucleotide repeat segments comprise the most pervasive class of mutations (9 of 28), while two recurring single-base substitution loci were identified. Seven variants, mostly insertion/deletions, represent population shifts from a heteroplasmic germline toward dominance in the tumor. In four cases, DNA from matched urine samples was similarly analyzed, with all somatic variants present in associated tumors readily detectable in the bodily fluid. Consistent with previous findings, mutant populations in urine were similar to those detected in tumor and in three of four cases were more prominent in urine. KEY MESSAGES PRS accurately detects high mtDNA mutations in UCCs and their body fluids. mtDNA mutations are universally heteroplasmic and often appear at low levels. The PRS technology could be a viable approach to develop mitochondrial biomarkers.
Collapse
|
14
|
Lahiri H, Mishra S, Mana T, Mukhopadhyay R. Discriminating unalike single nucleobase mismatches using a molecularly resolved, label-free, interfacial LNA-based assay. Analyst 2016; 141:4035-43. [DOI: 10.1039/c6an00484a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly resolved, label-free discrimination of different types of single nucleobase mismatches by LNA probes.
Collapse
Affiliation(s)
- Hiya Lahiri
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sourav Mishra
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanushree Mana
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
15
|
Anazawa T, Yokoi T, Uchiho Y. Side-Entry Laser-Beam Zigzag Irradiation of Multiple Channels in a Microchip for Simultaneous and Highly Sensitive Detection of Fluorescent Analytes. Anal Chem 2015; 87:8623-8. [DOI: 10.1021/acs.analchem.5b02222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takashi Anazawa
- Hitachi, Ltd., Research and Development Group, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Takahide Yokoi
- Hitachi, Ltd., Research and Development Group, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Yuichi Uchiho
- Hitachi, Ltd., Research and Development Group, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| |
Collapse
|
16
|
Nan H, Yoo DJ, Kang SH. Fast parallel detection of feline panleukopenia virus DNA by multi-channel microchip electrophoresis with programmed step electric field strength. J Sep Sci 2012; 36:350-5. [PMID: 23233436 DOI: 10.1002/jssc.201200721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/12/2022]
Abstract
A multi-channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge-coupled device camera were used to simultaneously detect the separations in three parallel channels using laser-induced fluorescence detection. The parallel separations of a 100-bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (M(r) = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single-run and one-step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi-channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease-related DNA fragments in parallel with high speed, throughput, and accuracy.
Collapse
Affiliation(s)
- He Nan
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | |
Collapse
|
17
|
Nan H, Lee SW, Kang SH. Fast screening of rice knockout mutants by multi-channel microchip electrophoresis. Talanta 2012; 97:249-55. [DOI: 10.1016/j.talanta.2012.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
18
|
Köhler S, Nagl S, Fritzsche S, Belder D. Label-free real-time imaging in microchip free-flow electrophoresis applying high speed deep UV fluorescence scanning. LAB ON A CHIP 2012; 12:458-463. [PMID: 22011722 DOI: 10.1039/c1lc20558g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report on label-free monitoring of microfluidic free-flow electrophoresis (μFFE) separations in real-time using a custom built high speed deep UV laser scanner. In combination with a novel layout realized in fused silica (FS) FFE chips the setup was successfully applied for continuous separations and detection of unlabeled analytes including native proteins by space-resolved intrinsic deep UV fluorescence scanning.
Collapse
Affiliation(s)
- Stefan Köhler
- Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
19
|
Liedert R, Amundsen LK, Hokkanen A, Mäki M, Aittakorpi A, Pakanen M, Scherer JR, Mathies RA, Kurkinen M, Uusitalo S, Hakalahti L, Nevanen TK, Siitari H, Söderlund H. Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria. LAB ON A CHIP 2012; 12:333-9. [PMID: 22127494 DOI: 10.1039/c1lc20782b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.
Collapse
Affiliation(s)
- Ralph Liedert
- VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, 90571, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
AL-Othman ZA, Ali I. NANO CAPILLARY ELECTROPHORESIS IN MICROCHIPS: A NEED OF THE PRESENT CENTURY. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.566031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zeid A. AL-Othman
- a Department of Chemistry, College of Science , King Saud University , Riyadh, Kingdom of Saudi Arabia
| | - Imran Ali
- b Department of Chemistry , Jamia Millia Islamia, (Central University) , New Delhi, India
| |
Collapse
|
21
|
Yu M, Wang Q, Patterson JE, Woolley AT. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis. Anal Chem 2011; 83:3541-7. [PMID: 21449615 DOI: 10.1021/ac200254c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to eight samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to eight samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid, and high-throughput analysis.
Collapse
Affiliation(s)
- Ming Yu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | | | | | | |
Collapse
|
22
|
Okagbare PI, Soper SA. Polymer-based dense fluidic networks for high throughput screening with ultrasensitive fluorescence detection. Electrophoresis 2010; 31:3074-82. [PMID: 20872611 DOI: 10.1002/elps.201000209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microfluidics represents a viable platform for performing high throughput screening (HTS) because of its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high-density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1-10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40× microscope objective (numerical aperture=0.75) created an FoV of 200 μm, providing the ability to interrogate ∼25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device. The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, apurinic Endonuclease 1, used as a model-screening assay.
Collapse
Affiliation(s)
- Paul I Okagbare
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
23
|
Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, Nordquist A, Lenigk R, Estes MD, Haley JP, McAlister CR, Chen X, Brooks C, Smith S, Elliott K, Koumi P, Zenhausern F, Tully G. Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 2010; 82:6991-9. [PMID: 20704389 DOI: 10.1021/ac101355r] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate a conduit for the delivery of a step change in the DNA analysis process: A fully integrated instrument for the analysis of multiplex short tandem repeat DNA profiles from reference buccal samples is described and is suitable for the processing of such samples within a forensic environment such as a police custody suite or booking office. The instrument is loaded with a DNA processing cartridge which incorporates on-board pumps and valves which direct the delivery of sample and reagents to the various reaction chambers to allow DNA purification, amplification of the DNA by PCR, and collection of the amplified product for delivery to an integral CE chip. The fluorescently labeled product is separated using micro capillary electrophoresis with a resolution of 1.2 base pairs (bp) allowing laser induced fluorescence-based detection of the amplified short tandem repeat fragments and subsequent analysis of data to produce a DNA profile which is compatible with the data format of the UK DNA database. The entire process from taking the sample from a suspect, to database compatible DNA profile production can currently be achieved in less than 4 h. By integrating such an instrument and microfluidic cartridge with the forensic process, we believe it will be possible in the near future to process a DNA sample taken from an individual in police custody and compare the profile with the DNA profiles held on a DNA Database in as little as 3 h.
Collapse
Affiliation(s)
- Andrew J Hopwood
- Research and Development, Forensic Science Service, Trident Court 2960 Solihull Parkway, Birmingham Business Park, Birmingham, UK B37 7YN.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Scherer JR, Liu P, Mathies RA. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:113105. [PMID: 21133459 DOI: 10.1063/1.3502457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
Collapse
Affiliation(s)
- James R Scherer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
25
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
26
|
Nikcevic I, Piruska A, Wehmeyer KR, Seliskar CJ, Limbach PA, Heineman WR. Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser-induced fluorescence detection. Electrophoresis 2010; 31:2796-803. [PMID: 20737446 PMCID: PMC3031587 DOI: 10.1002/elps.201000030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parallel separations using CE on a multilane microchip with multiplexed LIF detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be determined in parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pK(a) determination of small molecule analytes is demonstrated with the multilane microchip.
Collapse
Affiliation(s)
| | | | | | | | | | - William R. Heineman
- To whom correspondence should be addressed. . Tel: (513) 556-9210. Fax: (513) 556-9239
| |
Collapse
|
27
|
Yang W, Woolley AT. Integrated Multi-process Microfluidic Systems for Automating Analysis. ACTA ACUST UNITED AC 2010; 15:198-209. [PMID: 20514343 DOI: 10.1016/j.jala.2010.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement.
Collapse
Affiliation(s)
- Weichun Yang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | | |
Collapse
|
28
|
Reschke BR, Schiffbauer J, Edwards BF, Timperman AT. Simultaneous separation and detection of cations and anions on a microfluidic device with suppressed electroosmotic flow and a single injection point. Analyst 2010; 135:1351-9. [DOI: 10.1039/b921914e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Li B, Jiang L, Xie H, Gao Y, Qin J, Lin B. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip. Electrophoresis 2009; 30:3053-3057. [PMID: 19681052 DOI: 10.1002/elps.200900177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.
Collapse
Affiliation(s)
- Bowei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Graduate School of the Chinese Academy of Sciences, P. R. China
| | - Lei Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hua Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Graduate School of the Chinese Academy of Sciences, P. R. China
| | - Yan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
30
|
Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y, Mathies RA, Yang CJ. PMMA/PDMS valves and pumps for disposable microfluidics. LAB ON A CHIP 2009; 9:3088-94. [PMID: 19823724 DOI: 10.1039/b907254c] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Chemical Biology, Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surface, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
32
|
Beyor N, Yi L, Seo TS, Mathies RA. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 2009; 81:3523-8. [PMID: 19341275 DOI: 10.1021/ac900060r] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A laboratory-on-a-chip system for pathogen detection is presented that integrates cell preconcentration, purification, polymerase chain reaction (PCR), and capillary electrophoretic (CE) analysis. The microdevice is composed of micropumps and valves, a cell capture structure, a 100 nL PCR reactor, and a 5 cm long CE column for amplicon separation. Sample volumes ranging from 10 to 100 microL are introduced and driven through a fluidized bed of magnetically constrained immunomagnetic beads where the target cells are captured. After cell capture, beads are transferred using the on-chip pumps to the PCR reactor for DNA amplification. The resulting PCR products are electrophoretically injected onto the CE column for separation and detection of Escherichia coli K12 and E. coli O157 targets. A detection limit of 0.2 cfu/microL is achieved using the E. coli O157 target and an input volume of 50 microL. Finally, the sensitive detection of E. coli O157 in the presence of K12 at a ratio of 1:1000 illustrates the capability of our system to identify target cells in a high commensal background. This cell capture-PCR-CE microsystem is a significant advance in the development of rapid, sensitive, and specific laboratory-on-a-chip devices for pathogen detection.
Collapse
Affiliation(s)
- Nathaniel Beyor
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
33
|
Du X. Consecutive Electrophoretic Separation of PCR Products Under a High-Ionic-Strength Solution on PMMA Chips with Enhanced Static Adsorptive Coat. ANAL LETT 2009. [DOI: 10.1080/00032710902954433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Dishinger JF, Reid KR, Kennedy RT. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 2009; 81:3119-27. [PMID: 19364142 DOI: 10.1021/ac900109t] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Quantification of insulin release from pancreatic islets of Langerhans is of interest for diabetes research. Typical insulin secretion experiments are performed using offline techniques that are expensive, slow, have low-throughput, and require multiple islets. We have developed a microfluidic device for high-throughput, automated, and online monitoring of insulin secretion from individual islets in parallel. This chip consists of 15 channel networks each capable of superfusing a single islet and mixing superfusate from each islet online with fluorescein isothiocyanate-labeled insulin and anti-insulin antibody for a competitive immunoassay. The resulting continuous reaction streams are periodically injected onto parallel electrophoresis channels where the mixtures are separated. The resulting traces are used to quantify relative insulin released from islets. Serial immunoassays were performed at 10 s intervals on all 15 channels, corresponding to 5400 immunoassays per hour, to create temporally resolved insulin release profiles that captured single islet secretion dynamics. The chip was used to demonstrate that free fatty acid induced lipotoxicity in islets eliminates pulsatile insulin secretion.
Collapse
Affiliation(s)
- John F Dishinger
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
35
|
Thaitrong N, Toriello NM, Del Bueno N, Mathies RA. Polymerase chain reaction-capillary electrophoresis genetic analysis microdevice with in-line affinity capture sample injection. Anal Chem 2009; 81:1371-7. [PMID: 19140739 DOI: 10.1021/ac802057f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integrated polymerase chain reaction (PCR)-capillary electrophoresis (CE) microdevice with an efficient in-line affinity-based injector has been developed for genetic analysis. Double stranded DNA PCR amplicons generated in an integrated 250 nL PCR reactor are captured, purified, and preconcentrated by an oligonucleotide probe immobilized in an in situ polymerized gel matrix followed by thermal release and injection into the CE-separation channel. This in-column injector employs a photopolymerized oligonucleotide-modified acrylamide capture gel to eliminate band broadening and increase the injection efficiency to 100%. The on-chip generated PCR amplicons processed on this microdevice exhibit a 3-5 fold increase in signal intensities and improved resolution compared to our previous T-shaped injector. Multiplex analysis of 191-bp amplicons from Escherichia coli O157 and 256-bp amplicons from E. coli K12 is achieved with a 6-fold increase in resolution. These advances are exploited to successfully detect E. coli O157 in a 500-fold higher background of E. coli K12. This microdevice with in-line affinity capture gel injection provides an improved platform for low-volume, high sensitivity, fully integrated genetic analysis.
Collapse
Affiliation(s)
- Numrin Thaitrong
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
36
|
Ren K, Liang Q, Mu X, Luo G, Wang Y. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. LAB ON A CHIP 2009; 9:733-736. [PMID: 19224025 DOI: 10.1039/b810705j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
Collapse
Affiliation(s)
- Kangning Ren
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
37
|
Goswami S, Bajwa N, Asuri P, Ci L, Ajayan PM, Cramer SM. Aligned Carbon Nanotube Stationary Phases for Electrochromatographic Chip Separations. Chromatographia 2009. [DOI: 10.1365/s10337-008-0948-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 2008; 105:20173-8. [PMID: 19075237 DOI: 10.1073/pnas.0806355106] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An integrated microdevice is developed for the analysis of gene expression in single cells. The system captures a single cell, transcribes and amplifies the mRNA, and quantitatively analyzes the products of interest. The key components of the microdevice include integrated nanoliter metering pumps, a 200-nL RT-PCR reactor with a single-cell capture pad, and an affinity capture matrix for the purification and concentration of products that is coupled to a microfabricated capillary electrophoresis separation channel for product analysis. Efficient microchip integration of these processes enables the sensitive and quantitative examination of gene expression variation at the single-cell level. This microdevice is used to measure siRNA knockdown of the GAPDH gene in individual Jurkat cells. Single-cell measurements suggests the presence of 2 distinct populations of cells with moderate (approximately 50%) or complete (approximately 0%) silencing. This stochastic variation in gene expression and silencing within single cells is masked by conventional bulk measurements.
Collapse
|
39
|
Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated Sample Cleanup−Capillary Electrophoresis Microchip for High-Performance Short Tandem Repeat Genetic Analysis. Anal Chem 2008; 81:210-7. [DOI: 10.1021/ac8018685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie H. I. Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Peng Liu
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Nadia Del Bueno
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Susan A. Greenspoon
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
40
|
Sukas S, Elif Erson A, Sert C, Kulah H. A parylene‐based dual channel micro‐electrophoresis system for rapid mutation detection via heteroduplex analysis. Electrophoresis 2008; 29:3752-8. [DOI: 10.1002/elps.200800164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sertan Sukas
- Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Ayse Elif Erson
- Biology Department, Middle East Technical University, Ankara, Turkey
| | - Cuneyt Sert
- Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Haluk Kulah
- Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
41
|
Ali I, Aboul-Enein HY, Gupta VK. Microchip-Based Nano Chromatography and Nano Capillary Electrophoresis in Genomics and Proteomics. Chromatographia 2008. [DOI: 10.1365/s10337-008-0813-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Kho KW, Qing KZM, Shen ZX, Ahmad IB, Lim SSC, Mhaisalkar S, White TJ, Watt F, Soo KC, Olivo M. Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054026. [PMID: 19021406 DOI: 10.1117/1.2976140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The use of microfluidics for biofluid analysis offers a cheaper alternative to conventional techniques in disease diagnosis. However, traditional microfluidics design may be complicated by the need to incorporate separation elements into the system in order to facilitate specific molecular detection. Alternatively, an optical technique known as surface-enhanced Raman spectroscopy (SERS) may be used to enable identification of analyte molecules directly from a complex sample. This will not only simplify design but also reduce overall cost. The concept of SERS-based microfluidics is however not new and has been demonstrated previously by mixing SERS-active metal nanoparticles with a model sample, in situ, within the microchannel. Although the SERS reproducibility of these systems was shown to be acceptable, it is, however, not stable toward variations in the salt content of the sample, as will be shown in this study. We have proposed a microfluidics design whereby periodic SERS-active metal nanostructures are fabricated directly into the microchannel via a simple method of spin coating. Using artificial as well as human urine samples, we show that the current microfluidics is more stable toward variations in the sample's ionic strength.
Collapse
Affiliation(s)
- Kiang Wei Kho
- National Cancer Centre, 11 Hospital Drive, No. 05-05, Singapore, 169610
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dewald AH, Poe BL, Landers JP. Electrophoretic microfluidic devices for mutation detection in clinical diagnostics. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2008; 2:963-977. [PMID: 23495869 DOI: 10.1517/17530059.2.8.963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND In an era of growing interest in personalized medicine - where ubiquitous patient genotyping holds unprecedented clinical utility - rapid, sensitive and low-cost methodologies will be required for the detection of genetic variants correlative with disease. Electrophoretic microfluidic devices have emerged as a promising platform for such analyses, inherently offering faster analysis, excellent reagent economy, a small laboratory footprint and potentially seamless integration of multiple analytical steps. OBJECTIVE Although glass and polymeric microchips have recently been developed for a wide variety of medical applications, this review focuses on their application to the detection of clinically relevant genomic DNA mutations and polymorphisms. METHOD Mutation analysis techniques, including direct gene sizing, enzyme-based assays, heteroduplex analysis, single-strand conformational polymorphism analysis, and multiplex, allele-specific and methylation-specific PCR are included. CONCLUSION Further development of 'lab-on-a-chip' or 'micro total analysis system' technologies ultimately aims to streamline and miniaturize the entire genetic analysis process, enabling rapid, point-of-care analysis for molecular diagnostics.
Collapse
Affiliation(s)
- Alison H Dewald
- University of Virginia, Department of Chemistry, McCormick Road, Charlottesville, VA 22904, USA +1 434 243 8658 ; +1 434 924 3048 ;
| | | | | |
Collapse
|
44
|
Dishinger JF, Kennedy RT. Multiplexed detection and applications for separations on parallel microchips. Electrophoresis 2008; 29:3296-305. [PMID: 18702055 PMCID: PMC2597776 DOI: 10.1002/elps.200800067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much work has been performed since the development of the lab-on-a-chip concept that has brought microfabricated systems to the forefront of bioanalytical research. The success of using these microchips for performing complicated biological assays faster and cheaper than conventional methods has facilitated their emerging popularity among researchers. A recently exploited advantage of microfabricated technology has led to the creation of single wafers with multiple channel manifolds for high-throughput experiments. Efforts toward parallel microchip development have yielded fascinating new devices for chemical separations showing the potential for replacing conventional multiplexing techniques. This review will focus on recent work toward multiplexed separations on microdevices and complementary detection instrumentation.
Collapse
Affiliation(s)
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Yeung SHI, Medintz IL, Greenspoon SA, Mathies RA. Rapid determination of monozygous twinning with a microfabricated capillary array electrophoresis genetic-analysis device. Clin Chem 2008; 54:1080-4. [PMID: 18509014 DOI: 10.1373/clinchem.2007.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Microfabricated genetic-analysis devices have great potential for delivering complex clinical diagnostic technology to the point of care. As a demonstration of the potential of these devices, we used a microfabricated capillary array electrophoresis (microCAE) instrument to rapidly characterize the familial and genotypic relationship of twins who had been assigned fraternal (dizygous) status at birth. METHODS We extracted the genomic DNA from buccal samples collected from the twin sons, the parents, another sibling, and an unrelated control individual. We then carried out multiplex PCR amplification of sequences at 16 short tandem repeat loci commonly used in forensic identity testing. We simultaneously separated the amplicons from all of the individuals on a microCAE device and fluorescently detected the amplicons with single-base resolution in <30 min. RESULTS The genotypic analysis confirmed the identical status of the twins and revealed, in conjunction with the medical data, that their twin status arose from the rarer dichorionic, diamniotic process. CONCLUSIONS The ability to rapidly analyze complex genetic samples with microCAE devices demonstrates that this approach can help meet the growing need for rapid genetics-based diagnostics.
Collapse
Affiliation(s)
- Stephanie H I Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
46
|
Yeung SHI, Seo TS, Crouse CA, Greenspoon SA, Chiesl TN, Ban JD, Mathies RA. Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. Electrophoresis 2008; 29:2251-9. [DOI: 10.1002/elps.200700772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Fang Q, Shi XT, Du WB, He QH, Shen H, Fang ZL. High-throughput microfluidic sample-introduction systems. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Gao Y, Luo Y, Qin J, Lin B. A multichannel electrophoresis microchip platform for rapid chiral selector screening. Electrophoresis 2008; 29:1918-23. [DOI: 10.1002/elps.200700384] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Chen CJ, Li FA, Her GR. Development of a low-flow multiplexed interface for capillary electrophoresis/electrospray ion trap mass spectrometry using sequential spray. Electrophoresis 2008; 29:1997-2003. [DOI: 10.1002/elps.200700445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Kuswandi B, Nuriman, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: A review. Anal Chim Acta 2007; 601:141-55. [PMID: 17920386 DOI: 10.1016/j.aca.2007.08.046] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
|