1
|
Chen R, Ma XH, Luo P, Gong CH, Sun JJ, Si YB, Dong XY, Pan F, Zang SQ. Atomically Precise Ternary Cluster: Polyoxometalate Cluster Sandwiched by Gold Clusters Protected by N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2024:e202408310. [PMID: 39210521 DOI: 10.1002/anie.202408310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Coinage metal (Au, Ag, Cu) cluster and polyoxometalate (POM) cluster represent two types of subnanometer "artificial atoms" with significant potential in catalysis, sensing, and nanomedicine. While composite clusters combining Ag/Cu clusters with POM have achieved considerable success, the assembly of gold clusters with POM is still lagging. Herein, we first designedly synthesized two cluster structural units: an Au3O cluster stabilized by diverse N-heterocyclic carbene (NHC) ligands and an amine-terminated POM linker. The subsequent reaction involved amine substitution in the POM linker for the central O atom in the Au3O cluster, resulting in the first ternary composite cluster-a POM cluster sandwiched by two Au clusters protected by NHCs. Single-crystal X-ray diffraction and other characteristic methods characterized their atomically precise structures. Furthermore, altering the NHC ligands decreased the number of gold atoms in the sandwich structures, accompanying the different protonated degrees of amine ligand in the terminal end of the POM linker. These composite clusters showed excellent performances in catalytic H2O2 conversion through the synergistic effect between gold clusters and POM clusters. This work opens a new avenue to functional composite metal clusters and would promote their enhanced catalysis applications through intercluster synergistic interactions within composite systems.
Collapse
Affiliation(s)
- Ren Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiao-Hong Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chun-Hua Gong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun-Jun Sun
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Dethe DH, Sharma N, Juyal S, Singh P, Siddiqui SA. Enantioselective total synthesis of atisane diterpenoids: (+)-sapinsigin H, (+)-agallochaol C, and (+)-16α, 17-dihydroxy-atisan-3-one. Chem Commun (Camb) 2024; 60:7866-7869. [PMID: 38847577 DOI: 10.1039/d4cc01982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Enantioselective total synthesis of (+)-sapinsigin H, (+)-agallochaol C, and (+)-16α, 17-dihydroxy-atisan-3-one has been accomplished starting from enantiopure Wieland-Miescher ketone. Key features of the syntheses include a benzannulation step to construct the tricyclic core, an oxidative dearomatization step to generate the diene, and a Diels-Alder reaction with ethylene gas to establish the bicyclo[2.2.2]octane framework. Efficient late-stage functionalisation of the A-ring by aerobic oxidation and Baeyer-Villiger oxidation completed the atisane target molecules.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Nitin Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Sakshi Juyal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Prabhakar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
3
|
Zheng J, Jiang H, Yan Y, Yin T. Overview of the chemistry and biological activities of natural atisine-type diterpenoid alkaloids. RSC Adv 2024; 14:22882-22893. [PMID: 39040692 PMCID: PMC11261430 DOI: 10.1039/d4ra03305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Atisine-type C20-diterpenoid alkaloids (DAs) are a very important class of diterpenoid alkaloids, which play an important role in the biosynthesis of DAs. To date, 87 atisine-type DAs and 11 bis-DAs containing an atisine unit have been reported from five genera in two families. The genus Spiraea in Rosaceae family could be regarded as the richest resource for atisine-type DAs, followed by the genera Delphinium and Aconitum in the Ranunculaceae family. Among the reported atisine-type DAs, several possess unprecedented skeletons. Natural atisine-type DAs have a wide range of biological activities, including antitumor, antiplatelet aggregation, biological control, and anti-inflammatory, analgesic, antiarrhythmic, and cholinesterase inhibitory effects, which are closely related to their structures. In particular, the antiparasitic effect of atisine-type DAs is more prominent than that of other types of DAs, which highlights their potential in antiparasite drug discovery. In summary, the high chemical and biological diversity of atisine-type DAs indicates their great potential as a vast resource for drug discovery.
Collapse
Affiliation(s)
- Jiaqi Zheng
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Hongjun Jiang
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Yuanfeng Yan
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Tianpeng Yin
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| |
Collapse
|
4
|
Yu F, Xu L. A concise and stereoselective synthesis of the BCDF tetracyclic ring system of C 19-diterpenoid alkaloids. RSC Adv 2024; 14:21102-21106. [PMID: 38966809 PMCID: PMC11223105 DOI: 10.1039/d4ra02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
A new synthetic route for the BCDF tetracyclic ring system of C19-diterpenoid alkaloids (C19-DTAs) has been developed. The key step is a Pd-catalyzed transannular alkenylation that installs a functionalized bridged F ring. The overall strategy is concise and stereoselective, and it provides a valuable new tool for the synthesis of C19-DTAs. The synthesis begins with a bridged [3.2.1] ring system, which is converted to a key intermediate through a series of highly regio- and stereoselective processes. The introduction of an allylic side chain with high precision is accomplished, culminating in a Pd-catalyzed transannular alkenylation that installs a functionalized bridged F ring to yield the BCDF tetracyclic analog of C19-DTAs.
Collapse
Affiliation(s)
- Fangzhou Yu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Liang Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
5
|
Hou W, Lin H, Wu Y, Li C, Chen J, Liu XY, Qin Y. Divergent and gram-scale syntheses of (-)-veratramine and (-)-cyclopamine. Nat Commun 2024; 15:5332. [PMID: 38909052 PMCID: PMC11193734 DOI: 10.1038/s41467-024-49748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Veratramine and cyclopamine, two of the most representative members of the isosteroidal alkaloids, are valuable molecules in agricultural and medicinal chemistry. While plant extraction of these compounds suffers from uncertain supply, efficient chemical synthesis approaches are in high demand. Here, we present concise, divergent, and scalable syntheses of veratramine and cyclopamine with 11% and 6.2% overall yield, respectively, from inexpensive dehydro-epi-androsterone. Our synthesis readily provides gram quantities of both target natural products by utilizing a biomimetic rearrangement to form the C-nor-D-homo steroid core and a stereoselective reductive coupling/(bis-)cyclization sequence to establish the (E)/F-ring moiety.
Collapse
Affiliation(s)
- Wenlong Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yanru Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Li Q, Gu MM, Wu HW, Xu CS, Yu HL, Zhang Y, Su YY, Han HP, Liao ZX. Brunonianines D-F, three new C19-diterpenoid alkaloids from the Delphinium brunonianum, with therapeutic effect on ovarian cancer in vitro and in vivo. Bioorg Chem 2024; 148:107478. [PMID: 38788366 DOI: 10.1016/j.bioorg.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 μM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Min-Min Gu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Chen-Sen Xu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hao-Lin Yu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yun-Yun Su
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Ping Han
- The Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, PR China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
7
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
8
|
Lu F, Shao Y, Yan S, Yang D, Song H, Zhang D, Liu XY, Qin Y. Asymmetric Synthesis of the Functionalized A/E-Ring Fragment of C 18-Diterpenoid Alkaloids. J Org Chem 2024; 89:2807-2811. [PMID: 38324536 DOI: 10.1021/acs.joc.3c02745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A new asymmetric synthesis of the A/E-ring fragment of C18-diterpenoid alkaloids is described. The crucial contiguous stereogenic centers at C4, C5, and C11 were established through an asymmetric Michael addition/allylation sequence. The unique azabicyclo[3.3.1]nonane motif (A/E rings) was assembled by employing ring-closing metathesis and Mitsunobu reaction as key strategies.
Collapse
Affiliation(s)
- Fei Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Shao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shulin Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dingyi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Li C, Lu F, Cai Y, Zhang C, Shao Y, Zhang Y, Liu XY, Qin Y. Catalytic Asymmetric Total Synthesis of (-)-Garryine via an Enantioselective Heck Reaction. J Am Chem Soc 2024; 146:1081-1088. [PMID: 38113465 DOI: 10.1021/jacs.3c12171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The first asymmetric total synthesis of the hexacyclic veatchine-type C20-diterpenoid alkaloid (-)-garryine is presented. Key steps include a Pd-catalyzed enantioselective Heck reaction, a radical cyclization, and a photoinduced C-H activation/oxazolidine formation sequence. Of note, a highly enantioselective Heck reaction developed in this work provides efficient access to 6/6/6 tricyclic compounds, in particular, containing a C19-functionalitiy, which is useful for diverse transformations.
Collapse
Affiliation(s)
- Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fei Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yukun Cai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Shao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Tufano E, Lee E, Barilli M, Casali E, Oštrek A, Jung H, Morana M, Kang J, Kim D, Chang S, Zanoni G. Iridium Acylnitrenoid-Initiated Biomimetic Cascade Cyclizations: Stereodefined Access to Polycyclic δ-Lactams. J Am Chem Soc 2023. [PMID: 37926946 DOI: 10.1021/jacs.3c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.
Collapse
Affiliation(s)
- Eleonora Tufano
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Euijae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Matteo Barilli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andraž Oštrek
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Marta Morana
- Department of Earth Science, University of Firenze, Via G. La Pira 4, 50121 Firenze, Italy
| | - Jihye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
11
|
Li X, Zhang J, Chen Q, Tang P, Zhang T, Feng Q, Chen J, Liu Y, Wang FP, Peng C, Qin Y, Ouyang L, Xiao K, Liu XY. Diversity-oriented synthesis of diterpenoid alkaloids yields a potent anti-inflammatory agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154907. [PMID: 37295024 DOI: 10.1016/j.phymed.2023.154907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND The diterpenoid alkaloids belong to a highly esteemed group of natural compounds, which display significant biological activities. It is a productive strategy to expand the chemical space of these intriguing natural compounds for drug discovery. METHODS We prepared a series of new derivatives bearing diverse skeletons and functionalities from the diterpenoid alkaloids deltaline and talatisamine based on a diversity-oriented synthesis strategy. The anti-inflammatory activity of these derivatives was initially screened and evaluated by the release of nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated RAW264.7 cells. Futhermore, the anti-inflammatory activity of the representative derivative 31a was validated in various inflammatory animal models, including phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice ear edema, LPS-stimulated acute kidney injury, and collagen-induced arthritis (CIA). RESULTS It was found that several derivatives were able to suppress the secretion of NO, TNF-α, and IL-6 in LPS-activated RAW264.7 cells. Compound 31a, one of the representative derivatives named as deltanaline, demonstrated the strongest anti-inflammatory effects in LPS-activated macrophages and three different animal models of inflammatory diseases by inhibiting nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inducing autophagy. CONCLUSION Deltanaline is a new structural compound derived from natural diterpenoid alkaloids, which may serve as a new lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Li
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qifeng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyi Feng
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yun Liu
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng-Peng Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Ji J, Chen J, Qin S, Li W, Zhao J, Li G, Song H, Liu XY, Qin Y. Total Synthesis of Vilmoraconitine. J Am Chem Soc 2023; 145:3903-3908. [PMID: 36779887 DOI: 10.1021/jacs.3c00318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Vilmoraconitine belongs to one of the most complex skeleton types in the C19-diterpenoid alkaloids, which architecturally features an unprecedented heptacyclic core possessing a rigid cyclopropane unit. Here, we report the first total synthesis of vilmoraconitine relying on strategic use of efficient ring-forming reactions. Key steps include an oxidative dearomatization-induced Diels-Alder cycloaddition, a hydrodealkenylative fragmentation/Mannich sequence, and an intramolecular Diels-Alder cycloaddition.
Collapse
Affiliation(s)
- Jiujian Ji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Sixun Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanye Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guozhao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Shimakawa T, Nakamura S, Asai H, Hagiwara K, Inoue M. Total Synthesis of Puberuline C. J Am Chem Soc 2023; 145:600-609. [PMID: 36538394 DOI: 10.1021/jacs.2c11259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Puberuline C (1) is an architecturally complex C19-diterpenoid alkaloid with a unique ring fusion pattern. The 6/7/5/6/6/6-membered rings (ABCDEF-rings) contain one tertiary amine and six oxygen functionalities, and possess 12 contiguously aligned stereocenters, three of which are quaternary. These structural features of 1 make its chemical construction exceptionally challenging. Here, we disclose the first total synthesis of 1. The synthesis was accomplished from 2-cyclohexenone (9) by integrating radical cascade and Mukaiyama aldol reactions as the key transformations. A double Mannich reaction fused the A- and E-rings, and Sonogashira coupling attached the C-ring, efficiently leading to ACE-rings with the requisite 19 carbons of 1. The chemically stable tertiary chloride of the ACE-ring structure was then transformed to the corresponding bridgehead radical, which participated in the simultaneous cyclization of the B- and F-rings via a highly organized radical cascade process. This unusual step installed five contiguous stereocenters, including two quaternary carbons, without damaging the preexisting multiple polar functionalities. Subsequently, the intramolecular Mukaiyama aldol reaction between silyl enol ether and acetal was realized by applying a combination of SnCl4 and ZnCl2, forging the last remaining D-ring of the hexacycle. Finally, 3 was elaborated into 1 through regio- and stereoselective functionalizations of the BCD-rings. Our novel radical-based strategy achieved the total synthesis of 1 in 32 total steps from simple 9, demonstrating the power of the radical cascade reaction to streamline the assembly of highly complex molecules.
Collapse
Affiliation(s)
- Tsukasa Shimakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shu Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hibiki Asai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
14
|
Yang C, Shi L, Wang W, Xia JB, Li F. Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones. Org Chem Front 2023. [DOI: 10.1039/d2qo01777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work discloses the facile construction of polyheterocyclic alkylarylketones by the rhodium-catalyzed carbonylative aminoacylation of alkenes involving C–H activation, which provides molecules as candidates for the screening of antitumor agents.
Collapse
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Chen L, Tian M, Jin B, Yin B, Chen T, Guo J, Tang J, Cui G, Huang L. Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim. Int J Mol Sci 2022; 23:13463. [PMID: 36362268 PMCID: PMC9655601 DOI: 10.3390/ijms232113463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
Diterpene alkaloids (DAs) are characteristic compounds in Aconitum, which are classified into four skeletal types: C18, C19, C20, and bisditerpenoid alkaloids. C20-DAs are thought to be the precursor of the other types. Their biosynthetic pathway, however, is largely unclear. Herein, we combine metabolomics and transcriptomics to unveil the methyl jasmonate (MJ) inducible biosynthesis of DAs in the sterile seedling of A. gymnandrum, the only species in the Subgenus Gymnaconitum (Stapf) Rapaics. Target metabolomics based on root and aerial portions identified 51 C19-DAs and 15 C20-DAs, with 40 inducible compounds. The highest content of C20-DA atisine was selected for further network analysis. PacBio Isoform sequencing integrated with RNA sequencing not only provided the full-length transcriptome but also their response to induction, revealing 1994 genes that exhibited up-regulated expression. Further, 38 genes involved in terpenoid biosynthesis were identified, including 7 diterpene synthases. In addition to the expected function of the four diterpene synthases, AgCPS5 was identified to be a new ent-8,13-CPP synthase in Aconitum and could also combine with AgKSL1 to form the C20-DAs precursor ent-atiserene. Combined with multiple network analyses, six CYP450 and seven 2-ODD genes predicted to be involved in the biosynthesis of atisine were also identified. This study not only sheds light on diterpene synthase evolution in Aconitum but also provides a rich dataset of full-length transcriptomes, systemic metabolomes, and gene expression profiles, setting the groundwork for further investigation of the C20-DAs biosynthesis pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
16
|
Jin S, Zhao X, Ma D. Divergent Total Syntheses of Napelline-Type C20-Diterpenoid Alkaloids: (-)-Napelline, (+)-Dehydronapelline, (-)-Songorine, (-)-Songoramine, (-)-Acoapetaldine D, and (-)-Liangshanone. J Am Chem Soc 2022; 144:15355-15362. [PMID: 35948501 DOI: 10.1021/jacs.2c06738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The napelline-type alkaloids possess an azabicyclo[3.2.1]octane moiety and an ent-kaurane-type tetracyclic skeleton (6/6/6/5) along with varied oxidation patterns embedded in the compact hexacyclic framework. Herein, we disclose a divergent entry to napelline-type alkaloids that hinges on convergent assembly of the ent-kaurane core using a diastereoselective intermolecular Cu-mediated conjugate addition and subsequent intramolecular Michael addition reaction as well as rapid construction of the azabicyclo[3.2.1]octane motif via an intramolecular Mannich cyclization. The power of this strategy has been demonstrated through efficient asymmetric total syntheses of eight napelline-type alkaloids, including (-)-napelline, (-)-12-epi-napelline, (+)-dehydronapelline, (+)-12-epi-dehydronapelline, (-)-songorine, (-)-songoramine, (-)-acoapetaldine D, and (-)-liangshanone.
Collapse
Affiliation(s)
- Shicheng Jin
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
17
|
Mir WR, Bhat BA, Almilaibary A, Asdaq SMB, Mir MA. Evaluation of the In Vitro Antimicrobial Activities of Delphinium roylei: An Insight from Molecular Docking and MD-Simulation Studies. Med Chem 2022; 18:1109-1121. [PMID: 35507782 DOI: 10.2174/1573406418666220429093956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The burden of antimicrobial resistance demands a continued search for new antimicrobial drugs. The synthetic drugs which are used clinically have serious side effects. Natural products or compounds derived from natural sources show diversity in structure and play an essential role in drug discovery and development. OBJECTIVE Delphinium roylei is an important medicinal herb of Kashmir Himalaya, India. Traditionally this medicinal plant treats liver infections, skin problems, and chronic lower back pain. The current study evaluates the antimicrobial potential by various in -vitro and in -silico parameters. METHODS Three extracts and 168 bioactive compounds analysed through LC-MS data, with the vast majority of them having therapeutic applications of D. roylei, have been screened for the antimicrobial activity against bacteria (E. coli, M. luteus, K. pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungi (Candida albicans, Candida glabrata, Candida Paropsilosis) species through molecular docking using autodock Vina, MD simulation and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS The extracts, as well as the compounds analyzed through the LC-MS technique of Delphinium roylie showed significant antimicrobial activity. CONCLUSION Our study established that the leaf extracts of Delphinium roylei exhibit antimicrobial activity and thus confirm its importance in traditional medicine.
Collapse
Affiliation(s)
- Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Albaha University, Albaha-65511, KSA
| | | | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
18
|
Lv Y, Feng Y, Dai J, Zhang Y, Zhang H, Liu Z, Zheng H. Synthesis of the [6.6.7.5] Tetracyclic Core of Calyciphylline N via a Boc-Mediated Oxidative Dearomatization/Diels-Alder Approach. Org Lett 2022; 24:2694-2698. [PMID: 35362979 DOI: 10.1021/acs.orglett.2c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sequential process involving Boc-mediated oxidative dearomatization and inter/intramolecular Diels-Alder reaction was investigated. Based on an intermolecular Diels-Alder reaction and subsequently a radical 7-endo-trig type cyclization, the [6.6.7.5] tetracyclic core of Calyciphylline N was assembled.
Collapse
Affiliation(s)
- Yumeng Lv
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yueshen Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Jiatong Dai
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuying Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaxuan Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhigang Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
19
|
Xue F, Liu H, Wang R, Zhang D, Song H, Liu XY, Qin Y. Enantioselective total synthesis of (+)-vincamine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Liu XY, Ke BW, Qin Y, Wang FP. The diterpenoid alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 87:1-360. [PMID: 35168778 DOI: 10.1016/bs.alkal.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diterpenoid alkaloids are a family of extremely important natural products that have long been a research hotspot due to their myriad of intricate structures and diverse biological properties. This chapter systematically summarizes the past 11 years (2009-2019) of studies on the diterpenoid alkaloids, including the "so-called" atypical ones, covering the classification and biogenetic relationships, phytochemistry together with 444 new alkaloids covering 32 novel skeletons and the corrected structures, chemical reactions including conversion toward toxoids, synthetic studies, as well as biological activities. It should be noted that the synthetic studies, especially the total syntheses of various diterpenoid alkaloids, are for the first time reviewed in this treatise. This chapter, in combination with our four previous reviews in volumes 42, 59, 67, and 69, will present to the readers a more completed and updated profile of the diterpenoid alkaloids.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bo-Wen Ke
- West China Hospital, Sichuan University, Chengdu, China
| | - Yong Qin
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Feng-Peng Wang
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Cheng Y, Yang S, Zhao C, Liu H. Mechanism of the Fe( iii)-catalyzed synthesis of hexahydropyrimidine with α-phenylstyrene: a DFT study. RSC Adv 2022; 12:20523-20529. [PMID: 35919169 PMCID: PMC9284522 DOI: 10.1039/d2ra02727e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
It is very important to develop multiple C–H substitution reactions of simple alkenes to obtain complex unsaturated components. The present study focuses on a theoretical investigation of the plausible mechanism in the Fe(OTf)3-catalyzed tandem amidomethylative reactions of α-phenylstyrene. Bis(tosylamido)methane is activated by Fe(OTf)3 to form tosylformaldimine and its Fe(OTf)3-adduct. The Fe(OTf)3-adduct undergoes an intermolecular aza-Prins reaction with α-phenylstyrene to form allylamide. The DFT data support the formation of the hexahydropyrimidine derivative from allylamide, and “condensation/iminium homologation/intramolecular aza-Prins” is the optimal reaction path. At the same time, a possible reaction pathway for the conversion of the hydrolysate 1,3-diamide derivative to the hexahydropyrimidine (HHP) derivative is given. This work is thus instructive for understanding Fe(iii)-based tandem catalysis for the amidomethylative multiple-substitution reactions of alkenes. It is very important to develop multiple C–H substitution reactions of simple alkenes to obtain complex unsaturated components.![]()
Collapse
Affiliation(s)
- Yaxuan Cheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2, Changchun 130023, China
| | - Siwei Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2, Changchun 130023, China
| | - Chaoyu Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2, Changchun 130023, China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2, Changchun 130023, China
| |
Collapse
|
22
|
Martínez-García L, Prado G, Góñez KV, Paleo MR, Sardina FJ. Stereoselective Synthesis of Hydrindane and Hydroazulene Derivatives by Transannular Cyclization of Nine- and Ten-Membered Carbocycles. J Org Chem 2021; 86:13684-13692. [PMID: 34519499 DOI: 10.1021/acs.joc.1c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of cis-fused bicyclic diene dicarboxylates with Li/naphthalene triggers a tandem ring-opening and transannular cyclization process that stereoselectively yields hydroazulenes and hydrindanes derivatives. Cyclononadienyl diesters, which can be isolated after the ring-opening step by judicious choice of the reaction conditions, undergo a tandem conjugate addition/intramolecular Michael addition upon treatment with chiral lithium amides to give bicyclic β-amino esters in a process where 4 contiguous stereocenters are formed with high diastereocontrol. A concise route toward the highly enantioenriched AEF ring core of the aconitine-type alkaloids has been developed as an application of this methodology. The starting cis-fused bicyclic dicarboxylates are easily prepared in one step by reductive alkylation of diisopropyl phthalate (Na/THF, followed by the appropriate bis-electrophiles).
Collapse
Affiliation(s)
- Lucas Martínez-García
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gustavo Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Karen V Góñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Rita Paleo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F Javier Sardina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Zhang Q, Yang Z, Wang Q, Liu S, Zhou T, Zhao Y, Zhang M. Asymmetric Total Synthesis of Hetidine-Type C 20-Diterpenoid Alkaloids: (+)-Talassimidine and (+)-Talassamine. J Am Chem Soc 2021; 143:7088-7095. [PMID: 33938219 DOI: 10.1021/jacs.1c01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we report the first asymmetric total synthesis of (+)-talassimidine and (+)-talassamine, two hetidine-type C20-diterpenoid alkaloids. A highly regio- and diastereoselective 1,3-dipolar cycloaddition of an azomethine ylide yielded a chiral tetracyclic intermediate in high enantiopurity, thus providing the structural basis for asymmetric assembly of the hexacyclic hetidine skeleton. In this key step, the introduction of a single chiral center induces four new continuous chiral centers. Another key transformation is the dearomative cyclopropanation of the benzene ring and subsequent SN2-like ring opening of the resultant cyclopropane ring with water as a nucleophile, which not only establishes the B ring but also precisely installs the difficult-to-achieve equatorial C7-OH group.
Collapse
Affiliation(s)
- Quanzheng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yankun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
24
|
Wu X, Nie W, Fu M, Liu XY, Xue F, Qin Y. Synthetic studies towards arcutinidine: An alternative strategy for construction of the complete carbon framework. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|