1
|
Wang J, Nikolayev AA, Marks JH, Turner AM, Chandra S, Kleimeier NF, Young LA, Mebel AM, Kaiser RI. Interstellar Formation of Nitrogen Heteroaromatics [Indole, C 8H 7N; Pyrrole, C 4H 5N; Aniline, C 6H 5NH 2]: Key Precursors to Amino Acids and Nucleobases. J Am Chem Soc 2024. [PMID: 39370877 DOI: 10.1021/jacs.4c09449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) are not only fundamental building blocks in the prebiotic synthesis of vital biomolecules such as amino acids and nucleobases of DNA and RNA but also a potential source of the prominent unidentified 6.2 μm interstellar absorption band. Although NPAHs have been detected in meteorites and are believed to be ubiquitous in the universe, their formation mechanisms in deep space have remained largely elusive. Here, we report the first bottom-up formation pathways to the simplest prototype of NPAHs, indole (C8H7N), along with its building blocks pyrrole (C4H5N) and aniline (C6H5NH2) in low-temperature model interstellar ices composed of acetylene (C2H2) and ammonia (NH3). Utilizing the isomer-selective techniques of resonance-enhanced multiphoton ionization and tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, indole, pyrrole, and aniline were identified in the gas phase, suggesting that they are promising candidates for future astronomical searches in star-forming regions. Our laboratory experiments utilizing infrared spectroscopy and mass spectrometry in tandem with electronic structure calculations reveal critical insights into the reaction pathways toward NPAHs and their precursors, thus advancing our fundamental understanding of the interstellar formation of aromatic proteinogenic amino acids and nucleobases, key classes of molecules central to the Origins of Life.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | | | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sankhabrata Chandra
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - N Fabian Kleimeier
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Leslie A Young
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado 80302, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Wang J, Marks JH, Batrakova EA, Tuchin SO, Antonov IO, Kaiser RI. Formation of methylglyoxal (CH 3C(O)CHO) in interstellar analog ices - a key intermediate in cellular metabolism. Phys Chem Chem Phys 2024; 26:23654-23662. [PMID: 39224052 DOI: 10.1039/d4cp02779e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HĊO) radical with the acetyl (CH3ĊO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | - Ivan O Antonov
- Samara National Research University, Samara 443086, Russia.
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Abstract
Ground-based telescopes and space exploration have provided outstanding observations of the complexity of icy planetary surfaces. This work presents our review of the varying nature of carbon dioxide (CO2) and carbon monoxide (CO) ices from the cold traps on the Moon to Pluto in the Kuiper Belt. This review is organized into five parts. First, we review the mineral physics (e.g., rheology) relevant to these environments. Next, we review the radiation-induced chemical processes and the current interpretation of spectral signatures. The third section discusses the nature and distribution of CO2 in the giant planetary systems of Jupiter and Saturn, which are much better understood than the satellites of Uranus and Neptune, discussed in the subsequent section. The final sections focus on Pluto in comparison to Triton, having mainly CO, and a brief overview of cometary materials. We find that CO2 ices exist on many of these icy bodies by way of magnetospheric influence, while intermixing into solid ices with CH4 (methane) and N2 (nitrogen) out to Triton and Pluto. Such radiative mechanisms or intermixing can provide a wide diversity of icy surfaces, though we conclude where further experimental research of these ices is still needed.
Collapse
|