1
|
Li X, Chen H, Su Z, Zhao Q, Wang Y, Li N, Li S. Brightness Strategies toward NIR-II Emissive Conjugated Materials: Molecular Design, Application, and Future Prospects. ACS APPLIED BIO MATERIALS 2024; 7:8019-8039. [PMID: 38556979 DOI: 10.1021/acsabm.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.
Collapse
Affiliation(s)
- Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Zihan Su
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
2
|
Leach BI, Lister D, Adams SR, Bykowski J, Schwartz AB, McConville P, Dimant H, Ahrens ET. Cryo-Fluorescence Tomography as a Tool for Visualizing Whole-Body Inflammation Using Perfluorocarbon Nanoemulsion Tracers. Mol Imaging Biol 2024; 26:888-898. [PMID: 39023693 DOI: 10.1007/s11307-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE We explore the use of intravenously delivered fluorescent perfluorocarbon (PFC) nanoemulsion tracers and multi-spectral cryo-fluorescence tomography (CFT) for whole-body tracer imaging in murine inflammation models. CFT is an emerging technique that provides high-resolution, three-dimensional mapping of probe localization in intact animals and tissue samples, enabling unbiased validation of probe biodistribution and minimizes reliance on laborious histological methods employing discrete tissue panels, where disseminated populations of PFC-labeled cells may be overlooked. This methodology can be used to streamline the development of new generations of non-invasive, cellular-molecular imaging probes for in vivo imaging. PROCEDURES Mixtures of nanoemulsions with different fluorescent emission wavelengths were administered intravenously to naïve mice and models of acute inflammation, colitis, and solid tumor. Mice were euthanized 24 h post-injection, frozen en bloc, and imaged at high resolution (~ 50 µm voxels) using CFT at multiple wavelengths. RESULTS PFC nanoemulsions were visualized using CFT within tissues of the reticuloendothelial system and inflammatory lesions, consistent with immune cell (macrophage) labeling, as previously reported in in vivo magnetic resonance and nuclear imaging studies. The CFT signals show pronounced differences among fluorescence wavelengths and tissues, presumably due to autofluorescence, differential fluorescence quenching, and scattering of incident and emitted light. CONCLUSIONS CFT is an effective and complementary methodology to in vivo imaging for validating PFC nanoemulsion biodistribution at high spatial localization, bridging the resolution gap between in vivo imaging and histology.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julie Bykowski
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Amy B Schwartz
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Vahdani A, Moemeni M, Holmes D, Lunt RR, Jackson JE, Borhan B. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes. J Am Chem Soc 2024; 146:19756-19767. [PMID: 38989979 PMCID: PMC11273608 DOI: 10.1021/jacs.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In recent work to develop cyanine dyes with especially large Stokes shifts, we encountered a "blueing" reaction, in which the heptamethine cyanine dye Cy7 (IUPAC: 1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium) undergoes shortening in two-carbon steps to form the pentamethine (Cy5) and trimethine (Cy3) analogs. Each step blue-shifts the resulting absorbance wavelength by ca. 100 nm. Though photochemical and oxidative chain-shortening reactions had been noted previously, it is simple heating alone or with amine bases that effects this unexpected net C2H2 excision. Explicit acetylene loss would be too endothermic to merit consideration. Our mechanistic studies using 2H labeling, mass spectrometric and NMR spectroscopic analyses, and quantum chemical modeling point instead to electrocyclic closure and aromatization of the heptamethine chain in Cy7 forming Fischer's base FB (1,3,3-trimethyl-2-methyleneindoline), a reactive carbon nucleophile that initiates chain shortening of the cyanine dyes by attack on their polymethine backbones. The byproduct is the cationic indolium species TMP (IUPAC: 1,3,3 trimethyl-2-phenyl indolium).
Collapse
Affiliation(s)
- Aria Vahdani
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Daniel Holmes
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - James E. Jackson
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Yuan M, Han Z, Li Y, Zhan X, Sun Y, He B, Liang Y, Luo K, Li F. A pH-responsive nanoplatform with dual-modality imaging for enhanced cancer phototherapy and diagnosis of lung metastasis. J Nanobiotechnology 2024; 22:180. [PMID: 38622591 PMCID: PMC11017640 DOI: 10.1186/s12951-024-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin Zhan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yong Sun
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| |
Collapse
|
5
|
Kim H, Kim Y, Lee D. Small is Beautiful: Electronic Origin and Synthetic Evolution of Single-Benzene Fluorophores. Acc Chem Res 2024; 57:140-152. [PMID: 38126345 DOI: 10.1021/acs.accounts.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ConspectusSingle-benzene fluorophores (SBFs) are small molecules that produce visible light by using only one benzene ring as the sole aromatic core. This Account centers around the chemistry of a new class of SBF that we accidentally discovered but rationally developed and refined afterward. In a failed experiment that took an unintended reaction pathway, we encountered the bright green fluorescence of ortho-diacetylphenylenediamine (o-DAPA). Despite its uninspiring look, reminiscent of textbook examples of simple benzene derivatives, this molecule had neither been synthesized nor isolated before. This discovery led to our studies on the larger DAPA family, including isomeric m-DAPA and p-DAPA. Remarkably, p-DAPA is the lightest red fluorophore, with a molecular weight of only 192. While o- and p-DAPA are emissive, m-DAPA rapidly undergoes internal conversion, facilitated by sequential proton transfer reactions in the excited state.Leveraging the synthetic utility of the amine group, we carried out straightforward single-step modifications to create a full-color SBF library from p-DAPA as the common precursor. During the course of the investigation, we made another fortuitous discovery. With increasing acidity of the N-H group, the excited-state intramolecular proton transfer reaction is promoted, opening up additional pathways for emission to occur at even longer wavelengths. Tipping the balance between the two excited-state tautomers enabled the first example of a single-benzene white-light emitter. We demonstrated the practical utility of these molecules in white light-emitting devices and live cell imaging.According to the particle-in-a-box model, it is difficult to expect a molecule with only one small aromatic ring to produce long-wavelength emission. SBFs rise to this challenge by exploiting electron donor-acceptor pairs around the benzene core, which lowers the energy of light absorption. However, this answers only half of the question. Where do the exceptionally large spectral shifts in the light emission of SBFs originate from? Chemists have long been curious about the molecular mechanisms underlying the dramatic spectral shifts observed in SBFs. Prevailing paradigms invoke the charge transfer (CT) between electron donor and acceptor groups in the excited state. However, without a large π-skeleton for effective charge separation, how could benzene support a CT-type excited state? Our experimental and theoretical studies have revealed that large excited-state antiaromaticity (ESAA) of the benzene core itself is responsible for this remarkable phenomenon. The core matters, not the periphery. With appropriate molecular design, large and extended π-conjugation is no longer a prerequisite for long-wavelength light emission.
Collapse
Affiliation(s)
- Heechan Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826 Seoul, Korea
| | - Younghun Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826 Seoul, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826 Seoul, Korea
| |
Collapse
|
6
|
Britton D, Legocki J, Aristizabal O, Mishkit O, Liu C, Jia S, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Protein-Engineered Fibers For Drug Encapsulation Traceable via 19F Magnetic Resonance. ACS APPLIED NANO MATERIALS 2023; 6:21245-21257. [PMID: 38037605 PMCID: PMC10682962 DOI: 10.1021/acsanm.3c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Theranostic materials research is experiencing rapid growth driven by the interest in integrating both therapeutic and diagnostic modalities. These materials offer the unique capability to not only provide treatment but also track the progression of a disease. However, to create an ideal theranostic biomaterial without compromising drug encapsulation, diagnostic imaging must be optimized for improved sensitivity and spatial localization. Herein, we create a protein-engineered fluorinated coiled-coil fiber, Q2TFL, capable of improved sensitivity to 19F magnetic resonance spectroscopy (MRS) detection. Leveraging residue-specific noncanonical amino acid incorporation of trifluoroleucine (TFL) into the coiled-coil, Q2, which self-assembles into nanofibers, we generate Q2TFL. We demonstrate that fluorination results in a greater increase in thermostability and 19F magnetic resonance detection compared to the nonfluorinated parent, Q2. Q2TFL also exhibits linear ratiometric 19F MRS thermoresponsiveness, allowing it to act as a temperature probe. Furthermore, we explore the ability of Q2TFL to encapsulate the anti-inflammatory small molecule, curcumin (CCM), and its impact on the coiled-coil structure. Q2TFL also provides hyposignal contrast in 1H MRI, echogenic signal with high-frequency ultrasound and sensitive detection by 19F MRS in vivo illustrating fluorination of coiled-coils for supramolecular assembly and their use with 1H MRI, 19F MRS and high frequency ultrasound as multimodal theranostic agents.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Orlando Aristizabal
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Orin Mishkit
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Chengliang Liu
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sihan Jia
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Paul Douglas Renfrew
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
- Center for
Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Courant
Institute
of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, United States
| | - Youssef Z. Wadghiri
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
| |
Collapse
|
7
|
Mali A, Verbeelen M, White PB, Staal AHJ, van Riessen NK, Cadiou C, Chuburu F, Koshkina O, Srinivas M. The internal structure of gadolinium and perfluorocarbon-loaded polymer nanoparticles affects 19F MRI relaxation times. NANOSCALE 2023; 15:18068-18079. [PMID: 37916411 DOI: 10.1039/d3nr04577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging in novel therapies, such as cellular therapies and theranostic nanocarriers. Nanocarriers loaded with liquid perfluorocarbon (PFC) typically have a (single) core-shell structure with PFC in the core due to the poor miscibility of PFC with organic and inorganic solvents. Paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of the 19F signal is possible only with fluorophilic PFC-soluble chelates. However, these chelates cannot interact with the surrounding environment and they might result in image artifacts. Conversely, chelates bound to the nanoparticle shell typically have a minimal effect on the 19F signal and a strong impact on the aqueous environment. We show that the confinement of PFC in biodegradable polymeric nanoparticles (NPs) with a multicore structure enables the modulation of longitudinal (T1) and transverse (T2) 19F relaxation, as well as proton (1H) signals, using non-fluorophilic paramagnetic chelates. We compared multicore NPs versus a conventional single core structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. This modulated relaxation also makes multicore NPs sensitive to various acidic pH environments, while preserving their stability. This effect was not observed with single core nanocapsules (NCs). Importantly, paramagnetic chelates affected both T1 and T219F relaxation in multicore NPs, but not in single core NCs. Both relaxation times of the 19F nucleus were enhanced with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water permeable, proton enhancement additionally was observed in MRI.
Collapse
Affiliation(s)
- Alvja Mali
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot Verbeelen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Alexander H J Staal
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cyril Cadiou
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Françoise Chuburu
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Olga Koshkina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Mangala Srinivas
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Cenya Imaging B.V., Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
9
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
10
|
Ding L, Rong G, Cheng Y. Fluorous Tagged Peptides for Intracellular Delivery and Biomedical Imaging. Macromol Biosci 2023; 23:e2300048. [PMID: 36918279 DOI: 10.1002/mabi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed "fluorine effect". The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18 F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.
Collapse
Affiliation(s)
- Lei Ding
- Department of Ultrasound Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Fengxian District Central Hospital, Shanghai, 200241, P. R. China
| |
Collapse
|
11
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Tang X, Li A, Zuo C, Liu X, Luo X, Chen L, Li L, Lin H, Gao J. Water-Soluble Chemically Precise Fluorinated Molecular Clusters for Interference-Free Multiplex 19F MRI in Living Mice. ACS NANO 2023; 17:5014-5024. [PMID: 36862135 DOI: 10.1021/acsnano.2c12793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) is gaining widespread interest from the fields of biomolecule detection, cell tracking, and diagnosis, benefiting from its negligible background, deep tissue penetration, and multispectral capacity. However, a wide range of 19F MRI probes are in great demand for the development of multispectral 19F MRI due to the limited number of high-performance 19F MRI probes. Herein, we report a type of water-soluble molecular 19F MRI nanoprobe by conjugating fluorine-containing moieties with a polyhedral oligomeric silsesquioxane (POSS) cluster for multispectral color-coded 19F MRI. These chemically precise fluorinated molecular clusters are of excellent aqueous solubility with relatively high 19F contents and of single 19F resonance frequency with suitable longitudinal and transverse relaxation times for high-performance 19F MRI. We construct three POSS-based molecular nanoprobes with distinct 19F chemical shifts at -71.91, -123.23, and -60.18 ppm and achieve interference-free multispectral color-coded 19F MRI of labeled cells in vitro and in vivo. Moreover, in vivo 19F MRI reveals that these molecular nanoprobes could selectively accumulate in tumors and undergo rapid renal clearance afterward, illustrating their favorable in vivo behavior for biomedical applications. This study provides an efficient strategy to expand the 19F probe libraries for multispectral 19F MRI in biomedical research.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Renji Medical Research Center, Chengdu Second People's Hospital, Chengdu 610011, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Kotková Z, Koucký F, Kotek J, Císařová I, Parker D, Hermann P. Copper(II) complexes of cyclams with N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms as potential probes for 19F magnetic resonance imaging. Dalton Trans 2023; 52:1861-1875. [PMID: 36448539 DOI: 10.1039/d2dt03360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of Cu(II) complexes with cyclam-based ligands containing two N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms in 1,8-positions (L1: 1,2-ethylene spacer, L2: 1,3-propylene spacer; L3: 1,4-butylene spacer) was studied in respect to potential use as contrast agents for 19F magnetic resonance imaging (MRI). A number of structures of the complexes as well as of several organic precursors were determined by single-crystal X-ray diffraction analysis. Geometric parameters (especially distances between fluorine atoms and the central metal ion) were determined for each complex and the identity of isomeric complex species present in solution was established. The NMR longitudinal relaxation times (T1) of 19F nuclei in the ligands at clinically relevant fields and temperatures (1-2 s) were significantly shortened upon Cu(II) binding to 7-10 ms for [Cu(L1)]2+, 20-30 ms for [Cu(L2)]2+ and 20-50 ms for [Cu(L3)]2+. The trend of the relaxation time shortening is in accordance with the distance and number of chemical bonds between fluorine atoms and the Cu(II) ion. The signals show promising T2*/T1 ratios in the range 0.25-0.55, assuring their good applicability to 19F NMR/MRI. The results show that even the Cu(II) ion, with a small magnetic moment, causes significant relaxation enhancement with a long-range effect and can be considered as a highly suitable metal ion for efficient 19F MRI contrast agents.
Collapse
Affiliation(s)
- Zuzana Kotková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - David Parker
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
15
|
Sahoo J, Krishnaraj C, Sun J, Bihari Panda B, Subramanian PS, Sekhar Jena H. Lanthanide based inorganic phosphates and biological nucleotides sensor. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Li L, Li A, Lin Y, Chen D, Kang B, Lin H, Gao J. An Activatable 19 F MRI Molecular Probe for Sensing and Imaging of Norepinephrine. ChemistryOpen 2022; 11:e202200110. [PMID: 35762743 PMCID: PMC9278097 DOI: 10.1002/open.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Norepinephrine (NE), acting as both a neurotransmitter and hormone, plays a significant role in regulating the action of the brain and body. Many studies have demonstrated a strong correlation between mental disorders and aberrant NE levels. Therefore, it is of urgent demand to develop in vivo analytical methods of NE for diagnostic assessment and mechanistic investigations of mental diseases. Herein, we report a 19 F MRI probe (NRFP) for sensing and imaging NE, which is constructed by conjugating a gadolinium chelate to a fluorine-containing moiety through a NE-responsive aromatic thiocarbonate linkage. The capacity and specificity of NRFP for detecting NE is validated with in vitro detecting/imaging experiments. Furthermore, the feasibility of NRFP for visualizing NE in animals is illustrated by ex vivo and in vivo imaging experiments, demonstrating the promising potential of NRFP for selective detection and specific imaging of NE in deep tissues of living subjects.
Collapse
Affiliation(s)
- Lingxuan Li
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ao Li
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yaying Lin
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Dongxia Chen
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Bilun Kang
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hongyu Lin
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Jinhao Gao
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|