1
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Wen X, Leopold V, Seebeck FP. Enzymatic synthesis of S-adenosyl-l-homocysteine and its nucleoside analogs from racemic homocysteine thiolactone. Chem Sci 2024:d4sc03801k. [PMID: 39282651 PMCID: PMC11391342 DOI: 10.1039/d4sc03801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
S-Adenosyl methionine (SAM)-dependent methyltransferases hold significant potential as tools for the biocatalytic synthesis of complex molecules due to their ability to methylate or alkylate substrates with high regio-, chemo-, and stereoselectivity. Recent advancements in enzyme-catalyzed S-methylation and S-alkylation of S-adenosyl homocysteine (SAH) using synthetic alkylation agents have expanded the scope of methyltransferases in preparative biocatalysis. This development has transformed SAH from an unwanted byproduct into a crucial - and currently expensive - reagent. In this report, we present a simple and scalable one-pot synthesis of SAH, starting from racemic homocysteine thiolactone and adenosine. This process is catalyzed by recombinant α-amino-ε-caprolactam racemase, bleomycin hydrolase, and SAH hydrolase. The reaction proceeds to completion with near-stoichiometric mixtures of reactants, driven by the irreversible and stereoselective hydrolysis of thiolactone, followed by the thermodynamically favorable condensation of homocysteine with adenosine. We demonstrate that this method can be utilized to supplement preparative methylation reactions with SAH as a cofactor, as well as to synthesize and screen S-nucleosyl homocysteine derivatives in the search for stabilized SAM analogs.
Collapse
Affiliation(s)
- Xiaojin Wen
- Department of Chemistry, University of Basel Mattenstrasse 22 Basel 4002 Switzerland
- Molecular Systems Engineering, National Competence Center in Research (NCCR) 4058 Basel Switzerland
| | - Viviane Leopold
- Department of Chemistry, University of Basel Mattenstrasse 22 Basel 4002 Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel Mattenstrasse 22 Basel 4002 Switzerland
- Molecular Systems Engineering, National Competence Center in Research (NCCR) 4058 Basel Switzerland
| |
Collapse
|
4
|
Rudenko AY, Mariasina SS, Bolikhova AK, Nikulin MV, Ozhiganov RM, Vasil'ev VG, Ikhalaynen YA, Khandazhinskaya AL, Khomutov MA, Sergiev PV, Khomutov AR, Polshakov VI. Organophosphorus S-adenosyl- L-methionine mimetics: synthesis, stability, and substrate properties. Front Chem 2024; 12:1448747. [PMID: 39148665 PMCID: PMC11325224 DOI: 10.3389/fchem.2024.1448747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
S-Adenosyl-l-methionine (SAM)-mediated methylation of biomolecules controls their function and regulates numerous vital intracellular processes. Analogs of SAM with a reporter group in place of the S-methyl group are widely used to study these processes. However, many of these analogs are chemically unstable that largely limits their practical application. We have developed a new compound, SAM-P H , which contains an H-phosphinic group (-P(O)(H)OH) instead of the SAM carboxylic group. SAM-P H is significantly more stable than SAM, retains functional activity in catechol-O-methyltransferase and methyltransferase WBSCR27 reactions. The last is associated with Williams-Beuren syndrome. Rac-SAM-P H was synthesized chemically, while (R,S)-SAM-P H and its analogs were prepared enzymatically either from H-phosphinic analogs of methionine (Met-PH) or H-phosphinic analog of S-adenosyl-l-homocysteine (SAH-P H ) using methionine adenosyltransferase 2A or halide methyltransferases, respectively. SAH-P H undergoes glycoside bond cleavage in the presence of methylthioadenosine nucleosidase like natural SAH. Thus, SAM-P H and its analogs are promising new tools for investigating methyltransferases and incorporating reporter groups into their substrates.
Collapse
Affiliation(s)
- Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Sofia S Mariasina
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
- Research and Educational Resource Center "Pharmacy", RUDN University, Moscow, Russia
| | - Anastasiia K Bolikhova
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Maxim V Nikulin
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology, Moscow, Russia
| | - Vasiliy G Vasil'ev
- Research and Educational Resource Center "Pharmacy", RUDN University, Moscow, Russia
| | - Yuri A Ikhalaynen
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Maxim A Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Peter V Sergiev
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Alex R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Gasiulė L, Stankevičius V, Kvederavičiu Tė K, Rimšelis JM, Klimkevičius V, Petraitytė G, Rukšėnaitė A, Masevičius V, Klimašauskas S. Engineered Methionine Adenosyltransferase Cascades for Metabolic Labeling of Individual DNA Methylomes in Live Cells. J Am Chem Soc 2024; 146:18722-18729. [PMID: 38943667 PMCID: PMC11240257 DOI: 10.1021/jacs.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Methylation, a widely occurring natural modification serving diverse regulatory and structural functions, is carried out by a myriad of S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). The AdoMet cofactor is produced from l-methionine (Met) and ATP by a family of multimeric methionine adenosyltransferases (MAT). To advance mechanistic and functional studies, strategies for repurposing the MAT and MTase reactions to accept extended versions of the transferable group from the corresponding precursors have been exploited. Here, we used structure-guided engineering of mouse MAT2A to enable biocatalytic production of an extended AdoMet analogue, Ado-6-azide, from a synthetic methionine analogue, S-(6-azidohex-2-ynyl)-l-homocysteine (N3-Met). Three engineered MAT2A variants showed catalytic proficiency with the extended analogues and supported DNA derivatization in cascade reactions with M.TaqI and an engineered variant of mouse DNMT1 both in the absence and presence of competing Met. We then installed two of the engineered variants as MAT2A-DNMT1 cascades in mouse embryonic stem cells by using CRISPR-Cas genome editing. The resulting cell lines maintained normal viability and DNA methylation levels and showed Dnmt1-dependent DNA modification with extended azide tags upon exposure to N3-Met in the presence of physiological levels of Met. This for the first time demonstrates a genetically stable system for biosynthetic production of an extended AdoMet analogue, which enables mild metabolic labeling of a DNMT-specific methylome in live mammalian cells.
Collapse
Affiliation(s)
- Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiu Tė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Jonas Mindaugas Rimšelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidas Klimkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Gražina Petraitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Trainor N, Whitwell HJ, Jiménez B, Addison K, Leonidou E, DiMaggio PA, Fuchter MJ. Tracking DOT1L methyltransferase activity by stable isotope labelling using a selective synthetic co-factor. Commun Chem 2024; 7:145. [PMID: 38937590 PMCID: PMC11211345 DOI: 10.1038/s42004-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Epigenetic processes influence health and disease through mechanisms which alter gene expression. In contrast to genetic changes which affect DNA sequences, epigenetic marks include DNA base modifications or post-translational modification (PTM) of proteins. Histone methylation is a prominent and versatile example of an epigenetic marker: gene expression or silencing is dependent on the location and extent of the methylation. Protein methyltransferases exhibit functional redundancy and broad preferences for multiple histone residues, which presents a challenge for the study of their individual activities. We developed an isotopically labelled analogue of co-factor S-adenosyl-L-methionine (13CD3-BrSAM), with selectivity for the histone lysine methyltransferase DOT1L, permitting tracking of methylation activity by mass spectrometry (MS). This concept could be applied to other methyltransferases, linking PTM discovery to enzymatic mediators.
Collapse
Affiliation(s)
- Nicole Trainor
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 OBZ, UK
| | - Harry J Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB, Building Imperial College London, London, W12 ONN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - Beatriz Jiménez
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB, Building Imperial College London, London, W12 ONN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - Katie Addison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 OBZ, UK
| | - Emily Leonidou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 OBZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 OBZ, UK.
| |
Collapse
|
7
|
Vilkaitis G, Masevičius V, Kriukienė E, Klimašauskas S. Chemical Expansion of the Methyltransferase Reaction: Tools for DNA Labeling and Epigenome Analysis. Acc Chem Res 2023; 56:3188-3197. [PMID: 37904501 PMCID: PMC10666283 DOI: 10.1021/acs.accounts.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
DNA is the genetic matter of life composed of four major nucleotides which can be further furnished with biologically important covalent modifications. Among the variety of enzymes involved in DNA metabolism, AdoMet-dependent methyltransferases (MTases) combine the recognition of specific sequences and covalent methylation of a target nucleotide. The naturally transferred methyl groups play important roles in biological signaling, but they are poor physical reporters and largely resistant to chemical derivatization. Therefore, an obvious strategy to unlock the practical utility of the methyltransferase reactions is to enable the transfer of "prederivatized" (extended) versions of the methyl group.However, previous enzymatic studies of extended AdoMet analogs indicated that the transalkylation reactions are drastically impaired as the size of the carbon chain increases. In collaborative efforts, we proposed that, akin to enhanced SN2 reactivity of allylic and propargylic systems, addition of a π orbital next to the transferable carbon atom might confer the needed activation of the reaction. Indeed, we found that MTase-catalyzed transalkylations of DNA with cofactors containing a double or a triple C-C bond in the β position occurred in a robust and sequence-specific manner. Altogether, this breakthrough approach named mTAG (methyltransferase-directed transfer of activated groups) has proven instrumental for targeted labeling of DNA and other types of biomolecules (using appropriate MTases) including RNA and proteins.Our further work focused on the propargylic cofactors and their reactions with DNA cytosine-5 MTases, a class of MTases common for both prokaryotes and eukaryotes. Here, we learned that the 4-X-but-2-yn-1-yl (X = polar group) cofactors suffered from a rapid loss of activity in aqueous buffers due to susceptibility of the triple bond to hydration. This problem was remedied by synthetically increasing the separation between X and the triple bond from one to three carbon units (6-X-hex-2-ynyl cofactors). To further optimize the transfer of the bulkier groups, we performed structure-guided engineering of the MTase cofactor pocket. Alanine replacements of two conserved residues conferred substantial improvements of the transalkylation activity with M.HhaI and three other engineered bacterial C5-MTases. Of particular interest were CpG-specific DNA MTases (M.SssI), which proved valuable tools for studies of mammalian methylomes and chemical probing of DNA function.Inspired by the successful repurposing of bacterial enzymes, we turned to more complex mammalian C5-MTases (Dnmt1, Dnmt3A, and Dnmt3B) and asked if they could ultimately lead to mTAG labeling inside mammalian cells. Our efforts to engineer mouse Dnmt1 produced a variant (Dnmt1*) that enabled efficient Dnmt1-directed deposition of 6-azide-hexynyl groups on DNA in vitro. CRISPR-Cas9 editing of the corresponding codons in the genomic Dnmt1 alleles established endogenous expression of Dnmt1* in mouse embryonic stem cells. To circumvent the poor cellular uptake of AdoMet and its analogs, we elaborated their efficient internalization by electroporation, which has finally enabled selective catalysis-dependent azide tagging of natural Dnmt1 targets in live mammalian cells. The deposited chemical groups were then exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. These findings offer unprecedented inroads into studies of DNA methylation in a wide range of eukaryotic model systems.
Collapse
Affiliation(s)
- Giedrius Vilkaitis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute
of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Edita Kriukienė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Hartstock K, Kueck NA, Spacek P, Ovcharenko A, Hüwel S, Cornelissen NV, Bollu A, Dieterich C, Rentmeister A. MePMe-seq: antibody-free simultaneous m 6A and m 5C mapping in mRNA by metabolic propargyl labeling and sequencing. Nat Commun 2023; 14:7154. [PMID: 37935679 PMCID: PMC10630376 DOI: 10.1038/s41467-023-42832-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Internal modifications of mRNA have emerged as widespread and versatile regulatory mechanism to control gene expression at the post-transcriptional level. Most of these modifications are methyl groups, making S-adenosyl-L-methionine (SAM) a central metabolic hub. Here we show that metabolic labeling with a clickable metabolic precursor of SAM, propargyl-selenohomocysteine (PSH), enables detection and identification of various methylation sites. Propargylated A, C, and G nucleosides form at detectable amounts via intracellular generation of the corresponding SAM analogue. Integration into next generation sequencing enables mapping of N6-methyladenosine (m6A) and 5-methylcytidine (m5C) sites in mRNA with single nucleotide precision (MePMe-seq). Analysis of the termination profiles can be used to distinguish m6A from 2'-O-methyladenosine (Am) and N1-methyladenosine (m1A) sites. MePMe-seq overcomes the problems of antibodies for enrichment and sequence-motifs for evaluation, which was limiting previous methodologies. Metabolic labeling via clickable SAM facilitates the joint evaluation of methylation sites in RNA and potentially DNA and proteins.
Collapse
Affiliation(s)
- Katja Hartstock
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nadine A Kueck
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Petr Spacek
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Anna Ovcharenko
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nicolas V Cornelissen
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Amarnath Bollu
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
9
|
Cornelissen NV, Rentmeister A. Ribozyme for stabilized SAM analogue modifies RNA in cells. Nat Chem 2023; 15:1486-1487. [PMID: 37907605 DOI: 10.1038/s41557-023-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
|
10
|
Okuda T, Lenz AK, Seitz F, Vogel J, Höbartner C. A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells. Nat Chem 2023; 15:1523-1531. [PMID: 37667013 PMCID: PMC10624628 DOI: 10.1038/s41557-023-01320-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.
Collapse
Affiliation(s)
- Takumi Okuda
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Florian Seitz
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
11
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
12
|
Deng H, Xiang L, Yuan Z, Lin B, He Y, Hou Q, Ruan Y, Zhang J. Facile access to S-methyl dithiocarbamates with sulfonium or sulfoxonium iodide as a methylation reagent. Org Biomol Chem 2023; 21:6474-6478. [PMID: 37523154 DOI: 10.1039/d3ob00932g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Efficient access to S-methyl dithiocarbamates was achieved with sulfonium or sulfoxonium iodide as a methylation reagent. This method is reliable for the synthesis of dithiocarbamates from primary or secondary amines, with sulfoxonium iodide demonstrating more robust methylation capability than sulfonium iodide. Moreover, it also enables facile access to S-trideuteromethyl dithiocarbamates via sulfoxonium metathesis between sulfoxonium iodide and DMSO-d6 with high yields.
Collapse
Affiliation(s)
- Huiying Deng
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Lingling Xiang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yiting He
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
13
|
Ding W, Zhou M, Li H, Li M, Qiu Y, Yin Y, Pan L, Yang W, Du Y, Zhang X, Tang Z, Liu W. Biocatalytic Fluoroalkylation Using Fluorinated S-Adenosyl-l-methionine Cofactors. Org Lett 2023; 25:5650-5655. [PMID: 37490590 DOI: 10.1021/acs.orglett.3c02028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Modification of organic molecules with fluorine functionalities offers a critical approach to develop new pharmaceuticals. Here, we report a multienzyme strategy for biocatalytic fluoroalkylation using S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) and fluorinated SAM cofactors prepared from ATP and fluorinated l-methionine analogues by an engineered human methionine adenosyltransferase hMAT2AI322A. This work introduces the first example of biocatalytic 3,3-difluoroallylation. Importantly, this strategy can be applied to late-stage site-selective fluoroalkylation of complex molecule vancomycin with conversions up to 99%.
Collapse
Affiliation(s)
- Wenping Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Minqi Zhou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huayu Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenchao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Shimazu T, Yoshimoto R, Kotoshiba K, Suzuki T, Matoba S, Hirose M, Akakabe M, Sohtome Y, Sodeoka M, Ogura A, Dohmae N, Shinkai Y. Histidine N1-position-specific methyltransferase CARNMT1 targets C3H zinc finger proteins and modulates RNA metabolism. Genes Dev 2023; 37:724-742. [PMID: 37612136 PMCID: PMC10546975 DOI: 10.1101/gad.350755.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Histidine (His) residues are methylated in various proteins, but their roles and regulation mechanisms remain unknown. Here, we show that carnosine N-methyltransferase 1 (CARNMT1), a known His methyltransferase of dipeptide carnosine (βAla-His), is a major His N1-position-specific methyltransferase. We found that 52 His sites in 20 proteins underwent CARNMT1-mediated methylation. The consensus methylation site for CARNMT1 was identified as Cx(F/Y)xH, a C3H zinc finger (C3H ZF) motif. CARNMT1-deficient and catalytically inactive mutant mice showed embryonic lethality. Among the CARNMT1 target C3H ZF proteins, RNA degradation mediated by Roquin and tristetraprolin (TTP) was affected by CARNMT1 and its enzymatic activity. Furthermore, the recognition of the 3' splice site of the CARNMT1 target C3H ZF protein U2AF1 was perturbed, and pre-mRNA alternative splicing (AS) was affected by CARNMT1 deficiency. These findings indicate that CARNMT1-mediated protein His methylation, which is essential for embryogenesis, plays roles in diverse aspects of RNA metabolism by targeting C3H ZF-type RNA-binding proteins and modulating their functions, including pre-mRNA AS and mRNA degradation regulation.
Collapse
Affiliation(s)
- Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan;
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kaoru Kotoshiba
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan;
| |
Collapse
|
15
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
16
|
Cornelissen NV, Hoffmann A, Rentmeister A. DNA‐Methyltransferasen und AdoMet‐Analoga als Werkzeuge für die Molekularbiologie und Biotechnologie. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nicolas V. Cornelissen
- Westfälische Wilhelms-Universität Münster Institut für Biochemie, Fachbereich Chemie und Pharmazie Corrensstraße 36 48149 Münster Deutschland
| | - Arne Hoffmann
- Westfälische Wilhelms-Universität Münster Institut für Biochemie, Fachbereich Chemie und Pharmazie Corrensstraße 36 48149 Münster Deutschland
| | - Andrea Rentmeister
- Westfälische Wilhelms-Universität Münster Institut für Biochemie, Fachbereich Chemie und Pharmazie Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
17
|
Bastidas Ángel AY, Campos PRO, Alberto EE. Synthetic application of chalcogenonium salts: beyond sulfonium. Org Biomol Chem 2023; 21:223-236. [PMID: 36503911 DOI: 10.1039/d2ob01822e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of chalcogenonium salts in organic synthesis has grown enormously in the past decades since the discovery of the methyltransferase enzyme cofactor S-adenosyl-L-methionine (SAM), featuring a sulfonium center as the reactive functional group. Chalcogenonium salts can be employed as alkylating agents, sources of ylides and carbon-centered radicals, partners for metal-catalyzed cross-coupling reactions and organocatalysts. Herein, we will focus the discussion on heavier chalcogenonium salts (selenonium and telluronium), presenting their utility in synthetic organic transformations and, whenever possible, drawing comparisons in terms of reactivity and selectivity with the respective sulfonium analogues.
Collapse
Affiliation(s)
- Alix Y Bastidas Ángel
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Philipe Raphael O Campos
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Eduardo E Alberto
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Brandi J, Noberini R, Bonaldi T, Cecconi D. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J Chromatogr A 2022; 1678:463352. [PMID: 35896048 DOI: 10.1016/j.chroma.2022.463352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy.
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|