1
|
Artzy J, Tantillo DJ, Trauner DH. Biomimetic Synthesis of Azorellolide via Cyclopropylcarbinyl Cation Chemistry. J Am Chem Soc 2025; 147:78-83. [PMID: 39693250 PMCID: PMC11726563 DOI: 10.1021/jacs.4c14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
A concise synthesis of the complex diterpene azorellolide, inspired by speculations on biosynthetic cationic cascades, is presented. The approach, guided by computation, relies on the intramolecular interception of a cyclopropylcarbinyl cation by an appended carboxylate. The successful execution of this strategy was achieved through acid-catalyzed isomerization of a β-lactone in competition with a type I dyotropic rearrangement.
Collapse
Affiliation(s)
- Jordan
Y. Artzy
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Dirk H. Trauner
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Goel K, Satyanarayana G. A rapid pathway to molecular complexity: a palladium-catalyzed six-fold domino process to access polycyclic frameworks. Chem Commun (Camb) 2025; 61:536-539. [PMID: 39651541 DOI: 10.1039/d4cc05380j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, we present a hitherto unexplored efficient strategy for rapidly constructing structurally constrained and intriguing polycyclic frameworks with two adjacent quaternary centers. Remarkably, this becomes possible through palladium-catalyzed six-fold domino crossover annulations of simple 1,2-bis(2-bromoaryl)ethynes and 1,2-diarylethynes. Notably, this approach demonstrates the synthesis of both C2-symmetric and unsymmetric polycyclic products.
Collapse
Affiliation(s)
- Komal Goel
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
3
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2025; 30:69-84. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Chen L, Chen P, Jia Y. Bioinspired Total Synthesis of Natural Products. Acc Chem Res 2024; 57:3524-3540. [PMID: 39602164 DOI: 10.1021/acs.accounts.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ConspectusCurrently, the frontier challenges in total synthesis pertain to increasing the synthetic efficiency and enabling the divergent synthesis of a number of natural products. Bioinspired synthesis has been well recognized as an effective approach to increasing synthetic efficiency. Especially, when bioinspired synthesis was applied at late-stage skeletal diversification to generate various natural products with distinct carbon skeletons, it held special promise for achieving both goals. In our laboratory, bioinspired synthesis has served as one of two long-standing principles for facilitating the efficient synthesis of natural products. In this Account, we summarize our endeavors and journeys in the bioinspired synthesis of natural products. We categorize our work into three parts based on the imitation of biosynthetic reactions and processes.(1) To mimic the key cyclization steps. Inspired by the biosynthetic process that formed the core skeleton, we developed new synthetic methods to enable the rapid and efficient construction of the core skeletons of the targeted molecules, ultimately leading to their concise total synthesis, for example, seven-step total synthesis of lamellarins D and H featuring three bioinspired oxidative coupling reactions, seven-step total synthesis of clavicipitic acid highlighted by a C-H activation/aminocyclization cascade reaction, eight-step total synthesis of phalarine via a bioinspired oxidative coupling, seven-step total synthesis of α-cyclopiazonic acid, and ten-step total synthesis of speradine C through a bioinspired cascade cyclization reaction initiated by the benzylic carbocation of indole. (2) To mimic the revised biosynthetic pathway proposed by us. In some cases, the proposed biosynthetic processes may be flawed, as they contradict some basic principles of chemistry. Thus, an alternative biosynthetic process must be proposed and investigated. We showcase the total synthesis of euphorikanin A through a bioinspired benzilic acid-type rearrangement and bipolarolides A and B via a bioinspired Prins reaction/ether formation cascade cyclization. (3) To mimic the skeletal diversification process. Nature usually synthesizes a multitude of products from a key common intermediate in a divergent manner. Biogenic skeletal diversification to generate various natural products with distinct carbon skeletons has also drawn our attention. Compared with single-target-oriented synthesis, skeletal-diversity-oriented synthesis of natural products remains underexplored due to its high synthetic challenges. We showcased the divergent total syntheses of ten pallavicinia diterpenoids with three distinct skeletons and six grayanane diterpenoids with three distinct skeletons, which were achieved with unprecedented ease and high efficiency by imitation of the proposed biogenic skeletal diversification process. These two successful projects can serve as inspiration for the application of the bioinspired skeletal diversification strategy to other skeletally diverse natural products.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Peng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
5
|
Zeng T, Li J, Wu R. Natural product databases for drug discovery: Features and applications. PHARMACEUTICAL SCIENCE ADVANCES 2024; 2:100050. [DOI: 10.1016/j.pscia.2024.100050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Xiao J, Liu ZH, He ZF, Wu P, Wang YW, Li WDZ, Peng Y. Bioinspired Total Synthesis of 3- epi-Junipercedrol. Org Lett 2024; 26:7463-7467. [PMID: 39190923 DOI: 10.1021/acs.orglett.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A bioinspired total synthesis of 3-epi-junipercedrol, which contains a strained tricyclo[5.2.2.03,7]undecane allo-cedrane framework and five stereocenters, was accomplished via an effective anionic semipinacol rearrangement of a tricyclic cedrane mesylate. The corresponding cedrane precursor was synthesized efficiently by employing the reductive oxy-Nazarov cyclization and an intramolecular aldol condensation as the key steps. This synthetic approach provided a further evidence for the biogenetic relationship between the typical cedrane and allo-cedrane sesquiterpenoids.
Collapse
Affiliation(s)
- Jian Xiao
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zi-Hao Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zi-Fan He
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ping Wu
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ya-Wen Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Wei-Dong Z Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yu Peng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
7
|
Pan L, Schneider F, Ottenbruch M, Wiechert R, List T, Schoch P, Mertes B, Gaich T. A general strategy for the synthesis of taxane diterpenes. Nature 2024; 632:543-549. [PMID: 38862025 DOI: 10.1038/s41586-024-07675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.
Collapse
Affiliation(s)
- Lu Pan
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| | - Fabian Schneider
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Scripps Research, La Jolla, CA, USA
| | | | - Rainer Wiechert
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tatjana List
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Philipp Schoch
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Bastian Mertes
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Tanja Gaich
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| |
Collapse
|
8
|
Mikan CP, Watson JO, Walton R, Waddell PG, Knowles JP. Stereoselective Access to Diverse Alkaloid-Like Scaffolds via an Oxidation/Double-Mannich Reaction Sequence. Org Lett 2024; 26:5549-5553. [PMID: 38905202 PMCID: PMC11232018 DOI: 10.1021/acs.orglett.4c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sequential oxidative cleavage and double-Mannich reactions enable the stereoselective conversion of simple norbornenes into complex alkaloid-like structures. The products undergo a wide range of derivatization reactions, including regioselective enol triflate formation/cross-coupling sequences and highly efficient conversion to an unusual tricyclic 8,5,5-fused lactam. Overall, the process represents a formal one-atom aza-ring expansion with concomitant bridging annulation, making it of interest for the broader derivatization of alkene feedstocks.
Collapse
Affiliation(s)
- Charles P Mikan
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Joseph O Watson
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Ryan Walton
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jonathan P Knowles
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
9
|
Wiese L, Kolbe SM, Weber M, Ludlow M, Christmann M. Synthesis and biological evaluation of cleistocaltone A, an inhibitor of respiratory syncytial virus (RSV). Chem Sci 2024; 15:10121-10125. [PMID: 38966381 PMCID: PMC11220581 DOI: 10.1039/d4sc01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
The first chemical synthesis of the phloroglucinol meroterpenoid cleistocaltone A (1) is presented. This compound, previously isolated from Cleistocalyx operculatus was reported to show promising antiviral properties. Based on a modified biosynthesis proposal, a synthetic strategy was devised featuring an intramolecular Diels-Alder reaction and an epoxidation/elimination sequence to generate the allyl alcohol handle in the side chain. The strategy was successfully executed and synthetic cleistcaltone A was evaluated against a contemporary RSV-A strain.
Collapse
Affiliation(s)
- Lorenz Wiese
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Sophie M Kolbe
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover Foundation 30559 Hanover Germany
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover Foundation 30559 Hanover Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| |
Collapse
|
10
|
Soutome H, Yamashita H, Shimizu Y, Takumi M, Ashikari Y, Nagaki A. Convergent approach for direct cross-coupling enabled by flash irreversible generation of cationic and anionic species. Nat Commun 2024; 15:4873. [PMID: 38871696 DOI: 10.1038/s41467-024-48723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In biosynthesis multiple kinds of reactive intermediates are generated, transported, and reacted across different parts of organisms, enabling highly sophisticated synthetic reactions. Herein we report a convergent synthetic approach, which utilizes dual intermediates of cationic and carbanionic species in a single step, hinted at by the ideal reaction conditions. By reactions of unsaturated precursors, such as enamines, with a superacid in a flow microreactor, cationic species, such as iminium ions, are generated rapidly and irreversibly, and before decomposition, they are transported to react with rapidly and independently generated carbanions, enabling direct C-C bond formation. Taking advantage of the reactivity of these double reactive intermediates, the reaction take place within a few seconds, enabling synthetic reactions which are not applicable in conventional reactions.
Collapse
Affiliation(s)
- Hiroki Soutome
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Yokohama Technical Center, AGC Inc, Yokohama, Kanagawa, Japan
| | - Hiroki Yamashita
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Shimizu
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Takumi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
11
|
Guo XF, Shao H, Ma ZH, Sun J, Zhou Q, Zhao YM. Bioinspired Collective Total Synthesis of (±)-Rhynchines A-E. Org Lett 2024; 26:3135-3139. [PMID: 38563556 DOI: 10.1021/acs.orglett.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we present the first racemic total synthesis of the structurally complex monoterpene indole alkaloids rhynchines A-E, starting from commercially available methyl nicotinate and 3-(2-bromoethyl)-1H-indole. The success of our synthesis is attributed to the utilization of a bioinspired synthetic strategy, which facilitated the rapid construction of the pentacyclic core skeleton of the target molecules through biomimetic skeletal rearrangement and late-stage C-H oxidative cyclization. Additionally, silica-gel-promoted tautomerization played a crucial role as a strategic element in the chemical synthesis of rhynchines A and B.
Collapse
Affiliation(s)
- Xiao-Feng Guo
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| | - Zhi-Hua Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| | - Jian Sun
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| | - Qin Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an 710119, China
| |
Collapse
|
12
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
13
|
Xu H, Yuan Z, Yang S, Su Z, Hou XD, Deng Z, Zhang Y, Rao Y. Discovery of a Fungal P450 with an Unusual Two-Step Mechanism for Constructing a Bicyclo[3.2.2]nonane Skeleton. J Am Chem Soc 2024; 146:8716-8726. [PMID: 38484171 DOI: 10.1021/jacs.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The successful biomimetic or chemoenzymatic synthesis of target natural products (NPs) and their derivatives relies on enzyme discovery. Herein, we discover a fungal P450 BTG5 that can catalyze the formation of a bicyclo[3.2.2]nonane structure through an unusual two-step mechanism of dimerization and cyclization in the biosynthesis of beticolin 1, whose bicyclo[3.2.2]nonane skeleton connects an anthraquinone moiety and a xanthone moiety. Further investigation reveals that BTG5-T318 not only determines the substrate selectivity but also alters the catalytic reactions, which allows the separation of the reaction to two individual steps, thereby understanding its catalytic mechanism. It reveals that the first heterodimerization undergoes the common oxidation process for P450s, while the second uncommon formal redox-neutral cyclization step is proved as a redox-mediated reaction, which has never been reported. Therefore, this work advances our understanding of P450-catalyzed reactions and paves the way for expansion of the diversity of this class of NPs through synthetic biology.
Collapse
Affiliation(s)
- Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Sai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiao-Dong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
Zhou Q, Ma X, Qiao JB, He WJ, Jiang MR, Shao H, Zhao YM. Total Synthesis of Ganoderma Meroterpenoids Cochlearol B and Its Congeners Driven by Structural Similarity and Biological Homology. Chemistry 2024; 30:e202400084. [PMID: 38228507 DOI: 10.1002/chem.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Secondary metabolites that have the same biological origin must share some relationship in their biosynthesis. Exploring this relationship has always been a significant task for synthetic biologists. However, from the perspective of synthetic chemists, it is equally important to propose, prove, or refute potential biosynthetic pathways in order to elucidate and understand the biosynthesis of homologous secondary metabolites. In this study, driven by the high structural similarity between the homologous Ganoderma meroterpenoids cochlearol B and ganocin B, two chemically synthetic strategies were designed and investigated sequentially for the synthesis of cochlearol B from ganocin B. These strategies include intramolecular metal-catalyzed hydrogen atom transfer (MHAT) and intramolecular photochemical [2+2] cycloaddition. The aim was to reveal their potential biosynthetic conversion relationship using chemical synthesis methods. As a result, a highly efficient total synthesis of cochlearol B, cochlearol T, cochlearol F, as well as the formal total synthesis of ganocins A-B, and ganocochlearins C-D, has been achieved. Additionally, a novel synthetic approach for the synthesis of 6,6-disubstituted 6H-dibenzo[b,d]pyran and its analogues has been developed through palladium(II)-catalyzed Wacker-type/cross-coupling cascade reactions.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Jin-Bao Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Wen-Jing He
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Ming-Rui Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
- Xi'an Key Laboratory of Organometallic Material Chemistry & International Joint Research Center of Shaanxi Province for Organometallic Catalytic Chemistry, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
15
|
Wang Y, Gui J. Bioinspired Skeletal Reorganization Approach for the Synthesis of Steroid Natural Products. Acc Chem Res 2024. [PMID: 38301249 DOI: 10.1021/acs.accounts.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSteroids, termed "keys to life" by Rupert Witzmann, have a wide variety of biological activities, including anti-inflammatory, antishock, immunosuppressive, stress-response-enhancing, and antifertility activities, and steroid research has made great contributions to drug discovery and development. According to a chart compiled by the Njardarson group at the University of Arizona, 15 of the top 200 small-molecule drugs (by retail sales in 2022) are steroid-related compounds. Therefore, synthetic and medicinal chemists have long pursued the chemical synthesis of steroid natural products (SNPs) with diverse architectures, and vital progress has been achieved, especially in the twentieth century. In fact, several chemists have been rewarded with a Nobel Prize for original contributions to the isolation of steroids, the elucidation of their structures and biosynthetic pathways, and their chemical synthesis. However, in contrast to classical steroids, which have a 6/6/6/5-tetracyclic framework, rearranged steroids (i.e., abeo-steroids and secosteroids), which are derived from classical steroids by reorganization of one or more C-C bonds of the tetracyclic skeleton, have started to gain attention from the synthetic community only in the last two decades. These unique rearranged steroids have complex frameworks with high oxidation states, are rich in stereogenic centers, and have attractive biological activities, rendering them popular yet formidable synthetic targets.Our group has a strong interest in the efficient synthesis of SNPs and, drawing inspiration from nature, we have found that bioinspired skeletal reorganization (BSR) is an efficient strategy for synthesizing challenging rearranged steroids. Using this strategy, we recently achieved concise syntheses of five different kinds of SNPs (cyclocitrinols, propindilactone G, bufospirostenin A, pinnigorgiol B, and sarocladione) with considerably rearranged skeletons; our work also enabled us to reassign the originally proposed structure of sarocladione. In this Account, we summarize the proposed biosyntheses of these SNPs and describe our BSR approach for the rapid construction of their core frameworks. In the work described herein, information gleaned from the proposed biosyntheses allowed us to develop routes for chemical synthesis. However, in several cases, the synthetic precursors that we used for our BSR approach differed substantially from the intermediates in the proposed biosyntheses, indicating the considerable challenges we encountered during this synthetic campaign. It is worth mentioning that during our pursuit of concise and scalable syntheses of these natural products, we developed two methods for accessing synthetically challenging targets: a method for rapid construction of bridged-ring molecules by means of point-to-planar chirality transfer and a method for efficient construction of macrocyclic molecules via a novel ruthenium-catalyzed endoperoxide fragmentation. Our syntheses vividly demonstrate that consideration of natural product biosynthesis can greatly facilitate chemical synthesis, and we expect that the BSR approach will find additional applications in the efficient syntheses of other structurally complex steroid and terpenoid natural products.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Zhang H, Li B, Yang H, Tan Y, Tan X, Tang Y. Total Synthesis of Carolacton and Demethylcarolactons with Potent Antiviral Activity. Org Lett 2024; 26:370-375. [PMID: 38170945 DOI: 10.1021/acs.orglett.3c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Carolacton, a naturally occurring MTHFD1 inhibitor, exhibits potent inhibitory activity against various RNA viruses including SARS-CoV-2. Herein, we present a concise total synthesis of carolacton, featuring the Krische allylation, Marshall coupling, NHK coupling, and RCM reaction as key elements. Additionally, we have synthesized three simplified carolacton analogues, one of which, namely, 14-demethyl-carolacton, exhibited notable antiviral activity. The present work paves the way for further exploration of the therapeutic potential of carolacton and its analogues.
Collapse
Affiliation(s)
- Haoyu Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Bingsong Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ya Tan
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Fay N, Kouklovsky C, de la Torre A. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS ORGANIC & INORGANIC AU 2023; 3:350-363. [PMID: 38075446 PMCID: PMC10704578 DOI: 10.1021/acsorginorgau.3c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 06/13/2024]
Abstract
Total synthesis is a field in constant progress. Its practitioners aim to develop ideal synthetic strategies to build complex molecules. As such, they are both a driving force and a showcase of the progress of organic synthesis. In this Perspective, we discuss recent notable total syntheses. The syntheses selected herein are classified according to the key strategic considerations for each approach.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| |
Collapse
|
18
|
Zhu J, Jiang X, Luo X, Gao Y, Zhao R, Li J, Cai H, Dang X, Ye X, Bai R, Xie T. Discovery and bioassay of disubstituted β-elemene-NO donor conjugates: synergistic enhancement in the treatment of leukemia. Chin J Nat Med 2023; 21:916-926. [PMID: 38143105 DOI: 10.1016/s1875-5364(23)60404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 12/26/2023]
Abstract
Natural products are essential sources of antitumor drugs. One such molecule, β-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor β-elemene derivatives were designed, with β-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.
Collapse
Affiliation(s)
- Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangyang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
19
|
Zeng W, Zhang X, Zhang Y, Xiao S, Tang Y, Xie P, Loh TP. Organophotoredox-Catalyzed Intermolecular Formal Grob Fragmentation of Cyclic Alcohols with Activated Allylic Acetates. Org Lett 2023; 25:5869-5874. [PMID: 37515785 DOI: 10.1021/acs.orglett.3c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We have developed an efficient method that employs organophotoredox-catalyzed relay Grob fragmentation to facilitate the smooth ring-opening allylation of cyclic alcohols in an environmentally friendly manner. This protocol directly incorporates a wide spectrum of cyclic alcohols and activated allylic acetates into the cross-coupling reaction, eliminating the need for metal catalysts. The process yields a variety of distally unsaturated ketones with good to excellent outcomes and stereoselectivity, while acetic acid is the sole byproduct.
Collapse
Affiliation(s)
- Wubing Zeng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shiji Xiao
- Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou 213000, Jiangsu, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
20
|
Portero CE, Han Y, Marchán-Rivadeneira MR. Advances on the biosynthesis of pyridine rings. ENGINEERING MICROBIOLOGY 2023; 3:100064. [PMID: 39629243 PMCID: PMC11611018 DOI: 10.1016/j.engmic.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2024]
Abstract
Numerous studies have investigated the biosynthesis of pyridine heterocycles derived from nicotinic acid. However, metabolic pathways generating pyridine heterocycles in nature remain uninvestigated. Here, we summarize recent contributions conducted in the last decade on the biosynthetic pathways of non-derivate from nicotinic acid pyridine rings and discuss their implication on the study of natural products with pyridine structures.
Collapse
Affiliation(s)
- Carolina E Portero
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL) - Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | - M Raquel Marchán-Rivadeneira
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL) - Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| |
Collapse
|
21
|
Zheng X, Li Y, Guan M, Wang L, Wei S, Li YC, Chang CY, Xu Z. Biomimetic Total Synthesis of the Spiroindimicin Family of Natural Products. Angew Chem Int Ed Engl 2022; 61:e202208802. [PMID: 35904849 DOI: 10.1002/anie.202208802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 12/24/2022]
Abstract
A unified strategy for the biomimetic total synthesis of the spiroindimicin family of natural products was reported. Key transformations include a one-pot two-enzyme-catalyzed oxidative dimerization of L-tryptophan/5-chloro-L-tryptophan to afford the bis-indole precursors chromopyrrolic acid/5',5''-dichloro-chromopyrrolic acid, and regioselective C3'-C2'' and C3'-C4'' bond formation converting a common bis-indole skeleton to two skeletally different natural products, including (±)-spiroindimicins D and G with a [5,5] spiro-ring skeleton, and (±)-spiroindimicins A and H with a [5,6] spiro-ring skeleton, respectively.
Collapse
Affiliation(s)
- Xikang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Mengtie Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Lingyue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Shilong Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yi-Cheng Li
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, P. R. China
| | - Chin-Yuan Chang
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, P. R. China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
22
|
Chang Y, Sun C, Wang C, Huo X, Zhao W, Ma X. Biogenetic and biomimetic synthesis of natural bisditerpenoids: hypothesis and practices. Nat Prod Rep 2022; 39:2030-2056. [PMID: 35983892 DOI: 10.1039/d2np00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Bisditerpenoids, or diterpenoid dimers, are a group of natural products with high structural variance, deriving from homo- or hetero-dimeric coupling of two diterpenoid units. They usually possess complex architectures resulting from the diversity of monomeric diterpenoids as building blocks and the dimerization processes. These compounds have attracted the attention of synthetic and biological scientists owing to the rarity of their natural origin and their significant biological activities. Herein, we provide a review highlighting some of the interesting bisditerpenoids reported since 1961 and showcase the chemical diversity in both their structures and biosynthesis, as well as their biological functions. This review focuses on the biosynthetic dimerization pathways of interesting molecules and their biomimetic synthesis, which may act as useful inspiration for the discovery and synthesis of more bisditerpenoids and further pharmacological investigations.
Collapse
Affiliation(s)
- Yibo Chang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Chengpeng Sun
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Chao Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Wenyu Zhao
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaochi Ma
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
23
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium-Catalyzed Intramolecular C(sp 3 )-H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022; 61:e202207088. [PMID: 35751877 DOI: 10.1002/anie.202207088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Bioinspired palladium-catalyzed intramolecular cyclization of amino acid derivatives containing a vinyl iodide moiety by C-H activation enabled rapid access to a wide range of functionalized proline derivatives with an exocyclic olefin. To demonstrate the practicality of this methodology, the functionalized prolines were used as intermediates for the synthesis of several natural products: lucentamycin A, oxotomaymycin, oxoprothracarcin, and barmumycin.
Collapse
Affiliation(s)
- Quan-Zhe Li
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Chen
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Zheng X, Li Y, Guan M, Wang L, Wei S, Li YC, Chang CY, Xu Z. Biomimetic Total Synthesis of the Spiroindimicin Family of Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xikang Zheng
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Yan Li
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Mengtie Guan
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Lingyue Wang
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Shilong Wei
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Yi-Cheng Li
- National Yang Ming Chiao Tung University Department of Biological Sciences and Technology TAIWAN
| | - Chin-Yuan Chang
- National Yang Ming Chiao Tung University Department of Biological Sciences and Technology TAIWAN
| | - Zhengren Xu
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences 38 Xueyuan Road, Haidian District 100191 Beijing CHINA
| |
Collapse
|
25
|
Witte JM, Service J, Addo MA, Semakieh B, Collins E, Sams C, Dorsey TR, Garrelts E, Blumenshine CA, Cooper T, Martinez M, Hamaker CG, Ferrence GM, Hitchcock SR. Diastereoselective and Enantioselective Synthesis of α- p-Methoxyphenoxy-β-Lactones: Dependence on the Stereoelectronic Properties of the β-Hydroxy-α- p-Methoxyphenoxycarboxylic Acid Precursors. J Org Chem 2022; 87:9619-9634. [PMID: 35862509 DOI: 10.1021/acs.joc.2c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of β-hydroxy-α-p-methoxyphenoxy carboxylic acids derived from the asymmetric glycolate aldol addition reaction with p-nitrobenzenesulfonyl chloride yielded divergent results depending on the nature of the β-substituent of the carboxylic acid. Substrates bearing either alkyl substituents (R = -n-butyl, -n-octyl, -benzyl, isopropyl, -tert-butyl) or aryl systems bearing electron-withdrawing substituents (R = -p-C6H4Cl, -p-C6H4Br, -p-C6H4NO2) yielded β-lactones. In contrast, α-p-methoxyphenoxy-β-hydroxycarboxylic acids bearing electron-donating aryl groups or the sterically demanding 2-naphthyl group formed (Z)-alkenes.
Collapse
Affiliation(s)
- Jordan M Witte
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Jasmine Service
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Marian Aba Addo
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Bader Semakieh
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Erin Collins
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Christopher Sams
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy R Dorsey
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Elizabeth Garrelts
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Cassidy A Blumenshine
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Trace Cooper
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Moses Martinez
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Christopher G Hamaker
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Shawn R Hitchcock
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
26
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium‐Catalyzed Intramolecular C(sp3)−H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan-Zhe Li
- Shanghai Jiao Tong University Chemistry CHINA
| | - Si-Hua Hou
- SJTU: Shanghai Jiao Tong University CHEMISTRY CHINA
| | | | | | - Yu Hao
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Chao Chen
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Jia Zhou
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | | | - Shu-Yu Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan RoadB329 Chemsitry BuildingShanghai Jiao Tong University 200240 Shanghai CHINA
| |
Collapse
|
27
|
Zhang Y, Szostak M. Synthesis of Natural Products by C-H Functionalization of Heterocycless. Chemistry 2022; 28:e202104278. [PMID: 35089624 PMCID: PMC9035081 DOI: 10.1002/chem.202104278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Total synthesis is considered by many as the finest combination of art and science. During the last decades, several concepts were proposed for achieving the perfect vision of total synthesis, such as atom economy, step economy, or redox economy. In this context, C-H functionalization represents the most powerful platform that has emerged in the last years, empowering rapid synthesis of complex natural products and enabling diversification of bioactive scaffolds based on natural product architectures. In this review, we present an overview of the recent strategies towards the total synthesis of heterocyclic natural products enabled by C-H functionalization. Heterocycles represent the most common motifs in drug discovery and marketed drugs. The implementation of C-H functionalization of heterocycles enables novel tactics in the construction of core architectures, but also changes the logic design of retrosynthetic strategies and permits access to natural product scaffolds with novel and enhanced biological activities.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
28
|
Tang Y, Jingchun L, Shuang X. Biomimetic Diels-Alder Reactions in Natural Product Synthesis: A Personal Retrospect. Synlett 2022. [DOI: 10.1055/a-1748-4744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nature has been recognized for her super capability of constructing complex molecules with remarkable efficiency and elegancy. Among nature’s versatile synthetic toolkits, Diels-Alder reaction is particularly attractive since it allows for rapid generation of molecular complexity from simple precursors. For natural products biosynthetically formed through Diels-Alder reactions, the most straightforward way to access them should build on biomimetic Diels-Alder reactions. However, the implementation of biomimetic Diels-Alder reactions in a laboratory setting may encounter considerable challenges, particularly for those suffering from complicated reactivity and selectivity issues. Indeed, the translation of a biosynthetic hypothesis into a real biomimetic synthesis entails the orchestrated combination of nature’s inspiration and chemist’s rational design. In this account, we will briefly summarize our recent progress on the application of biomimetic Diels-Alder reactions in natural product synthesis. As shown in the discussed stories, rational manipulation of the structures of biosynthetic precursors plays a crucial role for the successful implementation of biomimetic Diels-Alder reactions.
1 Introduction
2 Biomimetic Synthesis of Rossinone B
3 Biomimetic Synthesis of Homodimericin A
4 Biomimetic Synthesis of Polycyclic and Dimeric Xanthanolides
5 Biomimetic Synthesis of Periconiasins and Pericoannosins
6 Biomimetic Synthesis of Merocyctochalasans
7 Conclusion and outlook
Collapse
Affiliation(s)
- Yefeng Tang
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liu Jingchun
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xi Shuang
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Xue Z, Li Q, Zhang J, Tang Y. Unified Biomimetic Approach to (+)-Hippolachnin A: In-Depth Insights into Its Biosynthetic Origin. Org Lett 2021; 23:8783-8788. [PMID: 34723550 DOI: 10.1021/acs.orglett.1c03280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A formal biomimetic synthesis of (+)-hippolachnin A has been achieved under the guidance of its plausible biosynthetic pathway. Pivotal transformations include an intriguing 1O2-mediated [4 + 2] cycloaddition and a tandem Kornblum-DeLaMare rearrangement/hemiketalization/dehydration reaction. The current work not only offers a unified approach to access skeletally diverse plakortin-type polyketides but also provides convincing evidence to elucidate their underlying biosynthetic network.
Collapse
Affiliation(s)
- Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qingong Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Shandong NHU Pharmaceutical Co., Ltd., No. 01999 Xiangjiang West Second Street, Binhai Economic and Technological Development Zone, Weifang 261108, Shandong Province, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|