1
|
Wang HT, Wang ZL, Chen K, Yao MJ, Zhang M, Wang RS, Zhang JH, Ågren H, Li FD, Li J, Qiao X, Ye M. Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants. Nat Commun 2023; 14:6658. [PMID: 37863881 PMCID: PMC10589286 DOI: 10.1038/s41467-023-42393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Apiose is a natural pentose containing an unusual branched-chain structure. Apiosides are bioactive natural products widely present in the plant kingdom. However, little is known on the key apiosylation reaction in the biosynthetic pathways of apiosides. In this work, we discover an apiosyltransferase GuApiGT from Glycyrrhiza uralensis. GuApiGT could efficiently catalyze 2″-O-apiosylation of flavonoid glycosides, and exhibits strict selectivity towards UDP-apiose. We further solve the crystal structure of GuApiGT, determine a key sugar-binding motif (RLGSDH) through structural analysis and theoretical calculations, and obtain mutants with altered sugar selectivity through protein engineering. Moreover, we discover 121 candidate apiosyltransferase genes from Leguminosae plants, and identify the functions of 4 enzymes. Finally, we introduce GuApiGT and its upstream genes into Nicotiana benthamiana, and complete de novo biosynthesis of a series of flavonoid apiosides. This work reports an efficient phenolic apiosyltransferase, and reveals mechanisms for its sugar donor selectivity.
Collapse
Affiliation(s)
- Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ming-Ju Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Rong-Shen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jia-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
2
|
Hillebrand M, Katsanikas M, Wiggins S, Skokos C. Navigating phase space transport with the origin-fate map. Phys Rev E 2023; 108:024211. [PMID: 37723690 DOI: 10.1103/physreve.108.024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/22/2023] [Indexed: 09/20/2023]
Abstract
We introduce and demonstrate the usage of the origin-fate map (OFM) as a tool for the detailed investigation of phase space transport in reactant-product-type systems. For these systems, which exhibit clearly defined start and end states, it is possible to build a comprehensive picture of the lobe dynamics by considering backward and forward integration of sets of initial conditions to index their origin and fate. We illustrate the method and its utility in the study of a two degrees of freedom caldera potential with four exits, demonstrating that the OFM not only recapitulates results from classical manifold theory but even provides more detailed information about complex lobe structures. The OFM allows the detection of dynamically significant transitions caused by the creation of new lobes and is also able to guide the prediction of the position of unstable periodic orbits (UPOs). Further, we compute the OFM on the periodic orbit dividing surface (PODS) associated with the transition state of a caldera entrance, which allows for a powerful analysis of reactive trajectories. The intersection of the manifolds corresponding to this UPO with other manifolds in the phase space results in the appearance of lobes on the PODS, which are directly classified by the OFM. This allows computations of branching ratios and the exploration of a fractal cascade of lobes as the caldera is stretched, which results in fluctuations in the branching ratio and chaotic selectivity. The OFM is found to be a simple and very useful tool with a vast range of descriptive and quantitative applications.
Collapse
Affiliation(s)
- Malcolm Hillebrand
- Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauer Straße 108, 01307 Dresden, Germany
| | - Matthaios Katsanikas
- Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4, Athens, GR-11527, Greece
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol, BS8 1UG, United Kingdom
| | - Stephen Wiggins
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol, BS8 1UG, United Kingdom
- Department of Mathematics, United States Naval Academy, Chauvenet Hall, 572C Holloway Road Annapolis, Maryland 21402-5002, USA
| | - Charalampos Skokos
- Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
3
|
Katsanikas M, Hillebrand M, Skokos C, Wiggins S. A new type of dynamical matching in an asymmetric Caldera potential energy surface. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Bruce‐Chwatt T, Naidoo KJ. Molecular mechanisms from reaction coordinate graph enabled multidimensional free energies illustrated on water dimer hydrogen bonding. J Comput Chem 2022; 43:1802-1813. [PMID: 36054751 PMCID: PMC9543413 DOI: 10.1002/jcc.26982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
Computing the free energies of molecular mechanisms in multidimensional space relies on combinations of geometrically complex reaction coordinates. We show how a graph theory implementation reduces complexity, and illustrate this on the arrangements of hydrogen bonding of a water dimer. The reaction coordinates and forces are computed using graphs that define the dependencies on the atoms in the Free Energy from Adaptive Reaction Coordinate Forces (FEARCF) library. The library can be interfaced with classical molecular dynamics as well as quantum molecular dynamics packages. Multidimensional interdependent reaction coordinates are constructed to produce complex free energy hypersurfaces. The reaction coordinates are graphed from atomic and molecular components to define points, distances, vectors, angles, planes and combinations thereof. The resultant free energy surfaces that are a function of the distance, angles, planes, and so on, can represent molecular mechanisms in reduced dimensions from the component atomic Cartesian coordinate degrees of freedom. The FEARCF library can be interfaced with any molecular package. Here, we demonstrate the link to NWChem to compute a hyperdimensional DFT (aug‐cc‐pVDZ basis set and X3LYP exchange correlation functionals) free energy space of a water dimer. Analysis of the water dimer free energy hypervolume reveals that while the chain and cyclic hydrogen bonding configurations are located in stable minimum energy wells, the bifurcated hydrogen bond configuration is a gateway to instability and dimer dissociation.
Collapse
Affiliation(s)
- Tomás Bruce‐Chwatt
- Scientific Computing Research Unit, Department of Chemistry University of Cape Town Cape Town South Africa
| | - Kevin J. Naidoo
- Scientific Computing Research Unit, Department of Chemistry University of Cape Town Cape Town South Africa
| |
Collapse
|