1
|
Fang Y, Gao Y, Wen Y, He X, Meyer TJ, Shan B. Photoelectrocatalytic CO 2 Reduction to Methanol by Molecular Self-Assemblies Confined in Covalent Polymer Networks. J Am Chem Soc 2024; 146:27475-27485. [PMID: 39192521 DOI: 10.1021/jacs.4c07949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inspired by the porous structures of photosynthetic organelles, we report here a new type of photoelectrode based on a standalone macroporous conjugated polymer network (MCN) that converts sunlight into high-energy electrons for CO2 reduction to CH3OH. The MCN provides supramolecular cavities with sufficient functional groups that control the structures of photocatalytic assemblies, which circumvents the geometric limitations of traditional inorganic counterparts. Stabilized interfacial contact between MCN and photocatalysts is achieved by strong chemical linkages throughout the network. Solar irradiation of MCN with a cobalt-based catalyst generates highly reducing electrons for the reduction of CO2 to CH3OH at a conversion efficiency of 70%. Production of CH3OH sustains for at least 100 h, with a small decrease in yield rates. Scaling up the photoelectrode from 1 to 100 cm2 results in photocurrent generation stabilized at 0.25 A and continuous CH3OH production at a conversion efficiency of 85%, demonstrating the scalability and high performances.
Collapse
Affiliation(s)
- Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yifan Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yingke Wen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinjia He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Thomas J Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wu S, Stanley PM, Deger SN, Hussain MZ, Jentys A, Warnan J. Photochargeable Mn-Based Metal-Organic Framework and Decoupled Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406385. [PMID: 39074974 DOI: 10.1002/anie.202406385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/31/2024]
Abstract
Designing multifunctional materials that mimic the light-dark decoupling of natural photosynthesis is a key challenge in the field of energy conversion. Herein, we introduce MnBr-253, a precious metal-free metal-organic framework (MOF) built on Al nodes, bipyridine linkers and MnBr(CO)3(bipyridine) complexes. Upon irradiation, MnBr-253 colloids demonstrate an electron photocharging capacity of ~42 C ⋅ g-1 MOF, with state-of-the-art photocharging rate (1.28 C ⋅ s-1 ⋅ g-1 MOF) and incident photon-to-electron conversion efficiency of ~9.4 % at 450 nm. Spectroscopic and computational studies support effective electron accumulation at the Mn complex while high porosity and Mn loading account for the notable electron storage performance. The charged MnBr-253 powders were successfully applied for hydrogen evolution under dark conditions thus emulating the light-decoupled reactivity of photosynthesis.
Collapse
Affiliation(s)
- Shufan Wu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Simon N Deger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Jentys
- Chair of Industrial Chemistry and Heterogenous Catalysis, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Wang H, Chen J, Hong M, Kang J, Jiang Y, Tian Q, Xu X, Wang H, Zhang Z, Liu X, Wen X, Gou Q. Exploring Uncharted Territory: Spectroscopic Evidence on a Novel Tetrel Bond with -C≡C- Triple Bond. J Phys Chem Lett 2024; 15:8636-8641. [PMID: 39150705 DOI: 10.1021/acs.jpclett.4c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This study presents an investigation of the 2-butynyl alcohol···CO2 adduct, combining pulsed jet Fourier transform microwave spectroscopy with quantum chemical calculations. Two distinct isomers have been observed in the pulsed jet with a relative population ratio of 3/2. It marks the first instance of microwave spectroscopic evidence, to the best of our knowledge, suggesting the existence of a CCO2···π-C≡C- tetrel bond (π-C≡C-···π*CO2 interaction) in both observed isomers. This study highlights the importance of noncovalent interactions involving CO2 in reactant complexes, paving the way for more efficient applications of CO2 by understanding the physical basis of these noncovalent bonds.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025 Guizhou, China
| | - Mei Hong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun Kang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yue Jiang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Qing Tian
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - He Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhenhua Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101407, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| |
Collapse
|
4
|
Fusco Z, Koenig D, Smith SC, Beck FJ. Ab initio investigation of hot electron transfer in CO 2 plasmonic photocatalysis in the presence of hydroxyl adsorbate. NANOSCALE HORIZONS 2024; 9:1030-1041. [PMID: 38623705 DOI: 10.1039/d4nh00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Photoreduction of carbon dioxide (CO2) on plasmonic structures is of great interest in photocatalysis to aid selectivity. While species commonly found in reaction environments and associated intermediates can steer the reaction down different pathways by altering the potential energy landscape of the system, they are often not addressed when designing efficient plasmonic catalysts. Here, we perform an atomistic study of the effect of the hydroxyl group (OH) on CO2 activation and hot electron generation and transfer using first-principles calculations. We show that the presence of OH is essential in breaking the linear symmetry of CO2, which leads to a charge redistribution and a decrease in the OCO angle to 134°, thereby activating CO2. Analysis of the partial density of states (pDOS) demonstrates that the OH group mediates the orbital hybridization between Au and CO2 resulting in more accessible states, thus facilitating charge transfer. By employing time-dependent density functional theory (TDDFT), we quantify the fraction of hot electrons directly generated into hybridized molecular states at resonance, demonstrating a broader energy distribution and an 11% increase in charge-transfer in the presence of OH groups. We further show that the spectral overlap between excitation energy and plasmon resonance plays a critical role in efficiently modulating electron transfer processes. These findings contribute to the mechanistic understanding of plasmon-mediated reactions and demonstrate the importance of co-adsorbed species in tailoring the electron transfer processes, opening new avenues for enhancing selectivity.
Collapse
Affiliation(s)
- Zelio Fusco
- Renewable Fuel Group, School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
| | - Dirk Koenig
- Integrated Materials Design Lab, The Australian National University, Canberra, ACT 2601, Australia
| | - Sean C Smith
- Integrated Materials Design Lab, The Australian National University, Canberra, ACT 2601, Australia
| | - Fiona Jean Beck
- Renewable Fuel Group, School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Takeda H, Irimajiri M, Mizutani T, Nozawa S, Matsuura Y, Kurosu M, Ishitani O. Photocatalytic CO 2 Reduction Using Mixed Catalytic Systems Comprising an Iron Cation with Bulky Phenanthroline Ligands. Inorg Chem 2024; 63:7343-7355. [PMID: 38598607 DOI: 10.1021/acs.inorgchem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This study reports on efficient photocatalytic CO2 reduction reactions using mixed catalytic systems of an Fe ion source and various 1,10-phenanthroline derivatives (R1R2p) as ligands in the presence of triethanolamine (TEOA). As the relatively bulky substituents at positions 2 and 9 of R1R2p weakened the ability to coordinate to the Fe ion, the Fe ion formed TEOA complexes. The free R1R2p accepted an electron from the reduced photosensitizer through proton-coupled electron transfer (PCET) using protons of TEOA dissolved in a CH3CN solution in a CO2 atmosphere as the initial step of the catalytic cycle. Although the mixed system of the nonsubstituted 1,10-phenanthroline generates a stable tris(phenanthroline)-Fe(II) complex in solution, this complex could not function as a CO2 reduction catalyst. The mechanism in which R1R2p interacts with the Fe ion after PCET was proposed for this efficient photocatalytic CO2 reduction. The proposed photocatalytic system using the 2,9-di-sec-butyl-phenanthroline ligand could produce CO with high efficiency (quantum yield of 8.2%) combined with a dinuclear Cu(I) complex as a photosensitizer.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Mina Irimajiri
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshihide Mizutani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunsuke Nozawa
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yuna Matsuura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Masao Kurosu
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Cohen KY, Nedd DG, Evans R, Bocarsly AB. Mechanistic insights into CO 2 conversion to CO using cyano manganese complexes. Dalton Trans 2023. [PMID: 37183860 DOI: 10.1039/d3dt00891f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Without the use of a photosensitizer, [Mn(bpy)(CO)3(CN)] (MnCN) can photochemically form [Mn(bpy)(CO)3]-, the active species for CO2 reduction. While cases of the axial X-ligand dissociating upon irradiation of fac-[M(N-N)(CO)3X] complexes (M = Mn or Re; N-N = bipyridine (bpy) ligand; X = halogen or pseudohalogen) are well documented, the axial cyanide ligand is retained when either [Mn(bpy)(CO)3(CN)] or [Mn(mesbpy)(CO)3(CN)], MnCN(mesbpy), are irradiated anaerobically. Infrared and UV-vis spectroscopies indicate the formation of [Mn(bpy)(CO)2(MeCN)(CN)] (s-MnCN) as the primary product during the irradiation of MnCN. An in-depth analysis of the photochemical mechanism for the formation of [Mn(bpy)(CO)3]- from MnCN is presented. MnCN(mesbpy) is too sterically hindered to undergo the same photochemical mechanism as MnCN. However, MnCN(mesbpy) is found to be electrocatalytically active for CO2 reduction to CO. Thus providing an interesting distinction between photochemical and electrochemical charge transfer.
Collapse
Affiliation(s)
- Kailyn Y Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Delaan G Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Andrew B Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
7
|
Domingo-Tafalla B, Chatterjee T, Franco F, Perez Hernandez J, Martinez-Ferrero E, Ballester P, Palomares E. Electro- and Photoinduced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO 2 and TiO 2/Iron Porphyrin Sensitized Films under CO 2 Reduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 36881406 PMCID: PMC10037241 DOI: 10.1021/acsami.2c22458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Electro- and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro- and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl- and β-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R.
Collapse
Affiliation(s)
- Beatriu Domingo-Tafalla
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili (URV), Departament D’enginyeria
electrònica Elèctrica i Automàtica, Avinguda
Països Catalans, 26 - Campus Sescelades, 43007 Tarragona, Spain
| | - Tamal Chatterjee
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Federico Franco
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Perez Hernandez
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Eugenia Martinez-Ferrero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Emilio Palomares
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
8
|
Smith MR, Martin CB, Arumuganainar S, Gilman A, Koel BE, Sarazen ML. Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metal-Organic Framework Catalysts for CO 2 Electroreduction. Angew Chem Int Ed Engl 2023; 62:e202218208. [PMID: 36584349 DOI: 10.1002/anie.202218208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Immobilization of porphyrin complexes into crystalline metal-organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from -0.6 V to -1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Clare B Martin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sonia Arumuganainar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ari Gilman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bruce E Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|