1
|
Lin K, Weng P, Qi Y, Teng J, Lei Z, Yan X. Evolution of Peptidomimetics-Based Chiral Assemblies of β-Sheet, α-Helix, and Double Helix Involving Chalcogen Bonds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39420868 DOI: 10.1021/acsami.4c10568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developing chiral assemblies that mimic biological secondary structures, e.g., protein β-sheet, α-helix, and DNA double helix, is a captivating goal in supramolecular chemistry. Here, we create a family of biomimetic chiral assemblies from alanine-based peptidomimetics, wherein the incorporation of N-terminal 2,1,3-benzoselenadiazole groups enables the rarely utilized chalcogen bonding as the adhesive interaction. While the alanine-based acylhydrazine molecule 1L was designed as a building unit with an extended conformation, simple derivatization of 1L affords folded unilateral N-amidothiourea 2L with one β-turn and bilateral N-amidothiourea 3L with two β-turns. This derivatization leads to the evolution of molecular assemblies from β-sheet organization (1L) to single helix (α-helix mimic, 2L) and ultimately to double helix (3L), illustrating an evolutionary route relating the structures and superstructures. In the case of the double helix formed by 3L, an unexpected cis-form that brings the two β-turns into one side was observed, stabilized via the π···π interaction between two N-terminal 2,1,3-benzoselenadiazole groups. This conformation allows double-crossed N-Se···S═C chalcogen bonds to support a DNA-like P-double helix featuring intrastrand noncovalent interactions and interstrand covalent linkages, surviving in both the solid state and in dilute acetonitrile solution phase.
Collapse
Affiliation(s)
- Kexin Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Peimin Weng
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yuanwei Qi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jinkui Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhikun Lei
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaosheng Yan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
3
|
Fernández-Fariña S, Maneiro M, Zaragoza G, Seco JM, Pedrido R, González-Noya AM. Nickel, copper, and zinc dinuclear helicates: how do bulky groups influence their architecture? Dalton Trans 2024; 53:5676-5685. [PMID: 38445308 DOI: 10.1039/d4dt00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The ligand design factors that may influence the isolation of metallosupramolecular helicates or mesocates still deserve to be investigated. In this sense, dinuclear nickel(II), copper(II) and zinc(II) compounds were obtained by electrochemical synthesis using a family of five Schiff base ligands, H2Ln (n = 1-5), derived from bisphenylmethane and functionalized with bulky tert-butyl groups in the periphery and ethyl groups in the spacer. Six of the new complexes were characterized by X-ray crystallography, thus demonstrating that the helicate structure is predominant in the solid state. 1H NMR studies were performed for the zinc complexes to analyze if the helical architecture of the metal complexes is retained in solution. These studies reveal that the presence of a tert-butyl group in the ortho position with respect to the OH group is an essential factor identified for the existence of a helicate conformation in solution.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Galicia, E-15782, Spain
| | - José M Seco
- Departamento de Química Orgánica Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| | - Ana M González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| |
Collapse
|
4
|
Fang L, Gou G, Wang M, Fan T, Yin Y, Li L. Regulating the Flexibility to Assemble Porous Single-Atom Fe-Coordinated Metallopolymers for Efficient Heterogeneous Catalytic Oxidations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5823-5833. [PMID: 38285621 DOI: 10.1021/acsami.3c15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Metallopolymers as organic-inorganic hybrid materials formulated by metal embedding organic polymers show great potential for novel heterogeneous catalysis, in terms of the facile structural design and tunability. Herein, the disadvantage of nonporous stacking of one-dimensional (1D) structures has been suppressed by chain modulation of the 1D metallopolymers, allowing for the convenient construction of porous assemblies with single-atom dispersion and accessible active sites. By postmodification, the Fe/CM-1 catalyst readily synthesized by coordinating the Fe(II) to the twisted chain of 1D Schiff-base polymer possesses expedient flexibility, showing the highest porosity, remarkable heterogeneous recyclability, and thus prominent catalytic activity for the selective oxidation of benzylamine and alcohols. Moreover, control experiments supported by computational studies demonstrated that the unique pincer structure of Fe/CM-1 effectively maintains the valence state of the anchored single-atom iron, facilitating single-electron transfer and promoting efficient iron redox cycling during the catalytic process. Notably, these 1D metallopolymers have the advantage of cost-effectiveness, easy preparation in gram-scale, and utilization in continuous reaction, providing inspirations for facile synthesis of efficient heterogeneous catalysts from the well-developed 1D metallopolymers.
Collapse
Affiliation(s)
- Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Romo-Islas G, Burguera S, Frontera A, Rodríguez L. Investigating the Impact of Packing and Environmental Factors on the Luminescence of Pt(N^N^N) Chromophores. Inorg Chem 2024; 63:2821-2832. [PMID: 38259118 PMCID: PMC10848268 DOI: 10.1021/acs.inorgchem.3c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Four Pt(II)(N^N^N) compounds featuring DMSO coordination at the fourth position were synthesized. Ligands varied in terms of pyridyl central ring (hydrogen/chlorine substituent) and lateral rings (triazoles with CF3 substitution or tetrazoles). Coordination to pyridine yielded tetra-nitrogen coordinated Pt(II) complexes or Pt-functionalized polymers using commercial 4-pyridyl polyvinyl (PV) or dimethylaminopyridine. Luminescence behaviors exhibited remarkable environmental dependence. While some of the molecular compounds (tetrazole derivatives) in solid state displayed quenched luminescence, all the polymers exhibited 3MMLCT emission around 600 nm. Conversely, monomer emission was evident on poly(methyl methacrylate) or polystyrene matrices. DFT calculations were used to analyze the aggregation of the complexes both at the molecular level and coordinated to the PV polymer and their influence on the HOMO-LUMO gaps.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Sergi Burguera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
6
|
Zhu H, Ronson TK, Wu K, Nitschke JR. Steric and Geometrical Frustration Generate Two Higher-Order Cu I12L 8 Assemblies from a Triaminotriptycene Subcomponent. J Am Chem Soc 2024; 146:2370-2378. [PMID: 38251968 PMCID: PMC10835662 DOI: 10.1021/jacs.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Xu M, Jing X, Sun B, He C, Reek JNH, Duan C. Urea-Functionalized Fe 4 L 6 Cages for Supramolecular Gold Catalyst Encapsulation to Control Substrate Activation Modes. Angew Chem Int Ed Engl 2023; 62:e202310420. [PMID: 37661189 DOI: 10.1002/anie.202310420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
The excellent catalytic performances of enzymes in terms of activity and selectivity are an inspiration for synthetic chemists and this has resulted in the development of synthetic containers for supramolecular catalysis. In such containers the local environment and pre-organization of catalysts and substrates leads to control of the activity and selectivity of the catalyst. Herein we report a supramolecular strategy to encapsulate single catalysts in a urea-functionalized Fe4 L6 cage, which can co-encapsulate a functionalized urea substrate through hydrogen bonding. Distinguished selectivity is obtained, imposed by the cage as site isolation only allows catalysis through π activation of the substrate and as a result the selectivity is independent of catalyst concentration. The encapsulated catalyst is more active than the free analogue, an effect that can be ascribed to transitionstate stabilization rather than substrate pre-organization, as revealed by the MM kinetic data. The simple strategy reported here is expected to be of general use in many reactions, for which the catalyst can be functionalized with a sulfonate group required for encapsulation.
Collapse
Affiliation(s)
- Meiling Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Bin Sun
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Chen T, Zhao Y, Dang LL, Zhang TT, Lu XL, Chai YH, Lu MY, Aznarez F, Ma LF. Self-Assembly and Photothermal Conversion of MetallaRussian Doll and Metalla[2]catenanes Induced via Multiple Stacking Interactions. J Am Chem Soc 2023; 145:18036-18047. [PMID: 37459092 DOI: 10.1021/jacs.3c05720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.
Collapse
Affiliation(s)
- Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Li Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ming-Yu Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Lian Z, He J, Liu L, Fan Y, Chen X, Jiang H. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device. Nat Commun 2023; 14:2752. [PMID: 37173318 PMCID: PMC10182020 DOI: 10.1038/s41467-023-38405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of efficient artificial light-harvesting systems (ALHSs) is of vital importance in utilizing solar energy. Herein, we report the non-covalent syntheses of double helicates PCP-TPy1/2 and Rp,Rp-PCP-TPy1/2 by metal-coordination interaction and their applications in ALHSs and white light-emitting diode (LED) device. All double helicates exhibit significant aggregation-induced emission in tetrahydrofuran/water (1:9, v/v) solvent. The aggregated double helicates can be used to construct one-step or sequential ALHSs with fluorescent dyes Eosin Y (EsY) and Nile red (NiR) with the energy transfer efficiency up to 89.3%. Impressively, the PMMA film of PCP-TPy1 shows white-light emission when doped 0.075% NiR, the solid of double helicates (Rp,Rp-) PCP-TPy2 can be used as the additive of a blue LED bulb to achieve white-light emission. In this work, we provided a general method for the preparation of novel double helicates and explored their applications in ALHSs and fluorescent materials, which will promote future construction and application of helicates as emissive devices.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
10
|
Espinosa CF, Ronson TK, Nitschke JR. Secondary Bracing Ligands Drive Heteroleptic Cuboctahedral Pd II12 Cage Formation. J Am Chem Soc 2023; 145:9965-9969. [PMID: 37115100 PMCID: PMC10176475 DOI: 10.1021/jacs.3c00661] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The structural complexity of self-assembled metal-organic capsules can be increased by incorporating two or more different ligands into a single discrete product. Such complexity can be useful, by enabling larger, less-symmetrical, or more guests to be bound. Here we describe a rational design strategy for the use of subcomponent self-assembly to selectively prepare a heteroleptic cage with a large cavity volume (2631 Å3) from simple, commercially available starting materials. Our strategy involves the initial isolation of a tris(iminopyridyl) PdII3 complex 1, which reacts with tris(pyridyl)triazine ligand 2 to form a heteroleptic sandwich-like architecture 3. The tris(iminopyridyl) ligand within 3 serves as a "brace" to control the orientations of the labile coordination sites on the PdII centers. Self-assembly of 3 with additional 2 was thus directed to generate a large PdII12 heteroleptic cuboctahedron host. This new cuboctahedron was observed to bind multiple polycyclic aromatic hydrocarbon guests simultaneously.
Collapse
Affiliation(s)
- Carles Fuertes Espinosa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Qiu S, Xue H, Wang R, Zhang C, He Q, Chang G, Bu W. Synthesis of platinum(II)-complex end-tethered polymers: spectroscopic properties and nanostructured particles. SOFT MATTER 2023; 19:2891-2901. [PMID: 37039071 DOI: 10.1039/d3sm00247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although metal-containing polymers have been widely studied as a novel class of functional soft materials, the microphase separation between polymeric segments and metal-ligand complexes has been less addressed, which is critical to control their structures and functions. To do this, short-chain polystyrenes (PSs) have been end-functionalized with nanosized square-planar platinum(II) complexes. The platinum(II)-comprising polymers were found to show significant luminescence enhancement in chloroform/methanol solvent mixtures upon increasing the methanol composition. By modulating both the PS length and solvent quality, various self-assembled morphologies formed controllably in the mixed solvents and typical examples include nanofibers, nanoellipsoids, and nanospheres. More interestingly, the inside structures of these polymer particles are shown to be lamellar with sub-10 nm spacings, wherein the PS blocks are alternatively aligned with the platinum(II) units. Such a luminescence enhancement and hierarchical nanostructured particles originate from a subtle combination of directional Pt(II)⋯Pt(II) and/or π-π stacking interactions between the platinum(II) units and the solvophobic effect between the PS blocks. This work suggests that by microphase separating polymer chains with nanosized metal-ligand complexes, metal-containing polymers can self-assemble to form sub-10 nm scale nanostructures showcasing desired properties and functions.
Collapse
Affiliation(s)
- Shengchao Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Hua Xue
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Ran Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Chi Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
12
|
Ai L, Pei Y, Song Z, Yong X, Song H, Liu G, Nie M, Waterhouse GIN, Yan X, Lu S. Ligand-Triggered Self-Assembly of Flexible Carbon Dot Nanoribbons for Optoelectronic Memristor Devices and Neuromorphic Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207688. [PMID: 36807578 PMCID: PMC10131856 DOI: 10.1002/advs.202207688] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs) are widely utilized in sensing, energy storage, and catalysis due to their excellent optical, electrical and semiconducting properties. However, attempts to optimize their optoelectronic performance through high-order manipulation have met with little success to date. In this study, through efficient packing of individual CDs in two-dimensions, the synthesis of flexible CDs ribbons is demonstrated technically. Electron microscopies and molecular dynamics simulations, show the assembly of CDs into ribbons results from the tripartite balance of π-π attractions, hydrogen bonding, and halogen bonding forces provided by the superficial ligands. The obtained ribbons are flexible and show excellent stability against UV irradiation and heating. CDs ribbons offer outstanding performance as active layer material in transparent flexible memristors, with the developed devices providing excellent data storage, retention capabilities, and fast optoelectronic responses. A memristor device with a thickness of 8 µm shows good data retention capability even after 104 cycles of bending. Furthermore, the device functions effectively as a neuromorphic computing system with integrated storage and computation capabilities, with the response speed of the device being less than 5.5 ns. These properties create an optoelectronic memristor with rapid Chinese character learning capability. This work lays the foundation for wearable artificial intelligence.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Yifei Pei
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Ziqi Song
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Xue Yong
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Haoqiang Song
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Gongjie Liu
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Mingjun Nie
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | | | - Xiaobing Yan
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Siyu Lu
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| |
Collapse
|
13
|
Kim H, Shin J, Kim S, Lee D. Helical fluxionality: numerical frustration drives concerted low-barrier screw motions of a tricopper cluster. Chem Sci 2023; 14:3265-3269. [PMID: 36970079 PMCID: PMC10034190 DOI: 10.1039/d3sc00851g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Uneven allocation of resources creates frustration, tension, and conflicts. Confronted with an apparent mismatch between the number of donor atoms and the number of metal atoms to be supported, helically twisted ligands cleverly come up with a sustainable symbiotic solution. As an example, we present a tricopper metallohelicate exhibiting screw motions for intramolecular site exchange. A combination of X-ray crystallographic and solution NMR spectroscopic studies revealed thermo-neutral site exchange of three metal centres hopping back and forth inside the helical cavity lined by a spiral staircase-like arrangement of ligand donor atoms. This hitherto unknown helical fluxionality is a superimposition of translational and rotational movements of molecular actuation, taking the shortest path with an extraordinarily low energy barrier without compromising the overall structural integrity of the metal-ligand assembly.
Collapse
Affiliation(s)
- Heechan Kim
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Juhwan Shin
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Seyong Kim
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
14
|
Kumar A, Bawa S, Bera J, Shankar U, Sahu S, Bandyopadhyay A. Synthesis and characterization of novel Al(
III
)‐metallopolymer and its application as a non‐volatile resistive memristive material. J Appl Polym Sci 2022. [DOI: 10.1002/app.53242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anil Kumar
- Department of Polymer & Process Engineering Saharanpur Campus, IIT Roorkee Saharanpur India
- Department of Food & Nutrition Kunsan National University Gunsan South Korea
| | - Shubham Bawa
- Department of Polymer & Process Engineering Saharanpur Campus, IIT Roorkee Saharanpur India
| | - Jayanta Bera
- Department of Physics IIT Jodhpur Rajasthan India
| | - Uday Shankar
- Department of Polymer & Process Engineering Saharanpur Campus, IIT Roorkee Saharanpur India
- Department of Organic Materials and Fiber Engineering Jeonbuk National University Jeonju South Korea
| | | | - Anasuya Bandyopadhyay
- Department of Polymer & Process Engineering Saharanpur Campus, IIT Roorkee Saharanpur India
| |
Collapse
|
15
|
Domoto Y, Fujita M. Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Verma A, Chaudhary P, Tripathi RK, Singh A, Yadav BC. State of the Art Metallopolymer Based Functional Nanomaterial for Photodetector and Solar Cell Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02301-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|