1
|
Mandal H, Giri SK, Jovanovski S, Varnavski O, Zagorska M, Ganczarczyk R, Chiang TM, Schatz GC, Goodson T. Impact of Classical and Quantum Light on Donor-Acceptor-Donor Molecules. J Phys Chem Lett 2024; 15:9493-9501. [PMID: 39255459 DOI: 10.1021/acs.jpclett.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Investigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor (A)-donor (D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single-photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime. The largest cross section is found for a DTP derivative that has a single photon excitation energy closest to resonance with half the two-photon excitation energy. These results are important for the possible use of quantum light for low-intensity energy-conversion applications.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sajal Kumar Giri
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara Jovanovski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Malgorzata Zagorska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Roman Ganczarczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tse-Min Chiang
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Fan JJ, Ou ZY, Zhang Z. Entangled photons enabled ultrafast stimulated Raman spectroscopy for molecular dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:163. [PMID: 39004616 PMCID: PMC11247098 DOI: 10.1038/s41377-024-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024]
Abstract
Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.
Collapse
Affiliation(s)
- Jiahao Joel Fan
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhe-Yu Ou
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Kim J. Practical Method for Achieving Single-Photon Femtosecond Time-Resolved Spectroscopy: Transient Stimulated Emission. J Phys Chem Lett 2024; 15:5407-5412. [PMID: 38739918 DOI: 10.1021/acs.jpclett.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent advances in single-photon femtosecond spectroscopy have highlighted the power of entangled photons in probing the properties of materials, previously inaccessible through semiclassical spectroscopic approaches. In this study, we theoretically propose a new single-photon-based femtosecond time-resolved spectroscopy technique termed single-photon transient stimulated emission (SP-TSE). SP-TSE not only enables the selective investigation of singly excited superposition states but also harnesses the quantum mechanical nature of photons for the efficient data acquisition of transient responses, thereby supporting the feasibility of experimental realization of SP-TSE. The key aspect of SP-TSE is the selective detection of two-photon states produced through stimulated emission using coincidence counting techniques. Our theoretical framework, supported by numerical simulations, demonstrates the efficacy in capturing the pure decoherence dynamics of a model molecular cavity, highlighting its potential to reveal quantum mechanical properties that are difficult to observe with semiclassical femtosecond time-resolved experiments.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
Schlawin F. Two-photon absorption cross sections of pulsed entangled beams. J Chem Phys 2024; 160:144117. [PMID: 38619059 DOI: 10.1063/5.0196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.
Collapse
Affiliation(s)
- Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
5
|
Triana-Arango F, Ramírez-Alarcón R, Ramos-Ortiz G. Entangled Two-Photon Absorption in Transmission-Based Experiments: Deleterious Effects from Linear Optical Losses. J Phys Chem A 2024; 128:2210-2219. [PMID: 38446597 DOI: 10.1021/acs.jpca.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Recently different experimental schemes have been proposed to study the elusive phenomenon of entangled two-photon absorption (ETPA) in nonlinear materials. The attempts to detect ETPA using transmission-based schemes have led to results whose validity is currently under debate because the ETPA signal can be corrupted or emulated by artifacts associated with linear optical losses. The present work addresses the issue of linear losses and the corresponding artifacts in transmission-based ETPA experiments through a new approach that exploits the properties of a Hong-Ou-Mandel (HOM) interferogram. Here, we analyze solutions of rhodamine B (RhB), commonly used as a model of a nonlinear medium in ETPA studies. Then, by using the HOM interferometer as a sensing device, we first demonstrate the equivalence of the standard transmission vs pump power ETPA experiments, presented in many reports, with our novel approach of transmission vs two-photon temporal delay. Second, a detailed study of the effects of optical losses, unrelated to ETPA, over the HOM interferogram is carried out by: (1) characterizing RhB in solutions prepared with different solvents and (2) considering scattering losses introduced by silica nanoparticles used as a controlled linear loss mechanism. Our results clearly expose the deleterious effects of linear optical losses over the ETPA signal when standard transmission experiments are employed and show how, by using the HOM interferogram as a sensing device, it is possible to detect the presence of such losses. Finally, once we showed that the HOM interferogram discriminates properly linear losses, our study also reveals that under the specific experimental conditions considered here, which are the same as those employed in many reported works, the ETPA was not unequivocally detected.
Collapse
Affiliation(s)
- Freiman Triana-Arango
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| | | | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| |
Collapse
|
6
|
Mandal H, Ogunyemi OJ, Nicholson JL, Orr ME, Lalisse RF, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Michaudel Q, Goodson T. Linear and Nonlinear Optical Properties of All- cis and All- trans Poly( p-phenylenevinylene). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2518-2528. [PMID: 38379916 PMCID: PMC10875663 DOI: 10.1021/acs.jpcc.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Olusayo J Ogunyemi
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jake L Nicholson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Meghan E Orr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Yadalam HK, Kizmann M, Rouxel JR, Nam Y, Chernyak VY, Mukamel S. Quantum Interferometric Pathway Selectivity in Difference-Frequency-Generation Spectroscopy. J Phys Chem Lett 2023; 14:10803-10809. [PMID: 38015605 DOI: 10.1021/acs.jpclett.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Even-order spectroscopies such as sum-frequency generation (SFG) and difference-frequency generation (DFG) can serve as direct probes of molecular chirality. Such signals are usually given by the sum of several interaction pathways that carry different information about matter. Here we focus on DFG, involving impulsive optical-optical-IR interactions, where the last IR pulse probes vibrational transitions in the ground or excited electronic state manifolds, depending on the interaction pathway. Spectroscopy with classical light can use phase matching to select the two pathways. In this theoretical study, we propose a novel quantum interferometric protocol that uses entangled photons to isolate individual pathways. This additional selectivity originates from engineering the state of light using a Zou-Wang-Mandel interferometer combined with coincidence detection.
Collapse
Affiliation(s)
- Hari Kumar Yadalam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Matthias Kizmann
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| |
Collapse
|
8
|
Chiang TM, Schatz GC. Theory of entangled two-photon emission/absorption [E2P-EA] between molecules. J Chem Phys 2023; 159:074103. [PMID: 37581420 DOI: 10.1063/5.0156501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor-acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA.
Collapse
Affiliation(s)
- Tse-Min Chiang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - George C Schatz
- Department of Chemistry and Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
Panahiyan S, Muñoz CS, Chekhova MV, Schlawin F. Nonlinear Interferometry for Quantum-Enhanced Measurements of Multiphoton Absorption. PHYSICAL REVIEW LETTERS 2023; 130:203604. [PMID: 37267533 DOI: 10.1103/physrevlett.130.203604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023]
Abstract
Multiphoton absorption is of vital importance in many spectroscopic, microscopic, or lithographic applications. However, given that it is an inherently weak process, the detection of multiphoton absorption signals typically requires large field intensities, hindering its applicability in many practical situations. In this Letter, we show that placing a multiphoton absorbent inside an imbalanced nonlinear interferometer can enhance the precision of multiphoton cross section estimation with respect to strategies based on photon-number measurements using coherent or even squeezed light directly transmitted through the medium. In particular, the power scaling of the sensitivity with photon flux can be increased by 1 order compared with transmission measurements of the sample with coherent light, such that the measurement precision at any given intensity can be greatly enhanced. Furthermore, we show that this enhanced measurement precision is robust against experimental imperfections leading to photon losses, which usually tend to degrade the detection sensitivity. We trace the origin of this enhancement to an optimal degree of squeezing which has to be generated in a nonlinear SU(1,1) interferometer.
Collapse
Affiliation(s)
- Shahram Panahiyan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria V Chekhova
- Max-Planck Institute for the Science of Light, Staudtstraße 2, Erlangen D-91058, Germany
- University of Erlangen-Nuremberg, Staudtstraße 7/B2, Erlangen D-91058, Germany
| | - Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Triana-Arango F, Ramos-Ortiz G, Ramírez-Alarcón R. Spectral Considerations of Entangled Two-Photon Absorption Effects in Hong-Ou-Mandel Interference Experiments. J Phys Chem A 2023; 127:2608-2617. [PMID: 36913489 DOI: 10.1021/acs.jpca.2c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Recently, different experimental methods intended to detect the entangled two-photon absorption (ETPA) phenomenon in a variety of materials have been reported. The present work explores a different approach in which the ETPA process is studied based on the changes induced in the visibility of a Hong-Ou-Mandel (HOM) interferogram. By using an organic solution of Rhodamine B as a model of nonlinear material interacting with entangled photons at ∼800 nm region produced by spontaneous parametric down-conversion (SPDC) Type-II, the conditions that make possible to detect changes in the visibility of a HOM interferogram upon ETPA are investigated. We support the discussion of our results by presenting a model in which the sample is considered as a spectral filtering function which fulfills the energy conservation conditions required by ETPA, allowing us to explain the experimental observations with good agreement. We believe that this work represents a new perspective to studying the ETPA interaction, by using an ultrasensitive quantum interference technique and a detailed mathematical model of the process.
Collapse
Affiliation(s)
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica AC, Apartado Postal 37150, León, Gto, México
| | | |
Collapse
|
11
|
Giri SK, Schatz GC. Manipulating Two-Photon Absorption of Molecules through Efficient Optimization of Entangled Light. J Phys Chem Lett 2022; 13:10140-10146. [PMID: 36270000 DOI: 10.1021/acs.jpclett.2c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report how the unique temporal and spectral features of pulsed entangled photons from a parametric downconversion source can be utilized for manipulating electronic excitations through the optimization of their spectral phase. A new comprehensive optimization protocol based on Bayesian optimization has been developed in this work to selectively excite electronic states accessible by two-photon absorption. Using our optimization method, the entangled two-photon absorption probability for a thiophene dendrimer can be enhanced by up to a factor of 20, while classical light turns out to be nonoptimizable. Moreover, the optimization involving photon entanglement enables selective excitation that would not be possible otherwise. In addition to optimization, we have explored entangled two-photon absorption in the small entanglement time limit showing that entangled light can excite molecular electronic states that are vanishingly small for classical light. We demonstrate these opportunities with an application to a thiophene dendrimer.
Collapse
Affiliation(s)
- Sajal Kumar Giri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|