1
|
Sheng W, Rajeshkumar T, Zhao Y, Maron L, Zhu C. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds. J Am Chem Soc 2024; 146:12790-12798. [PMID: 38684067 DOI: 10.1021/jacs.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.
Collapse
Affiliation(s)
- Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Li K, Rajeshkumar T, Zhao Y, Wang T, Maron L, Zhu C. Temperature induced single-crystal to single-crystal transformation of uranium azide complexes. Chem Commun (Camb) 2024; 60:2966-2969. [PMID: 38376444 DOI: 10.1039/d4cc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(μ-N)2} (4).
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Ward RJ, Rungthanaphatsophon P, Huang P, Kelley SP, Walensky JR. Cooperative dihydrogen activation with unsupported uranium-metal bonds and characterization of a terminal U(iv) hydride. Chem Sci 2023; 14:12255-12263. [PMID: 37969582 PMCID: PMC10631237 DOI: 10.1039/d3sc04857h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
Cooperative chemistry between two or more metal centres can show enhanced reactivity compared to the monometallic fragments. Given the paucity of actinide-metal bonds, especially those with group 13, we targeted uranium(iii)-aluminum(i) and -gallium(i) complexes as we envisioned the low-valent oxidation state of both metals would lead to novel, cooperative reactivity. Herein, we report the molecular structure of [(C5Me5)2(MesO)U-E(C5Me5)], E = Al, Ga, Mes = 2,4,6-Me3C6H2, and their reactivity with dihydrogen. The reaction of H2 with the U(iii)-Al(i) complex affords a trihydroaluminate complex, [(C5Me5)2(MesO)U(μ2-(H)3)-Al(C5Me5)] through a formal three-electron metal-based reduction, with concomitant formation of a terminal U(iv) hydride, [(C5Me5)2(MesO)U(H)]. Noteworthy is that neither U(iii) complexes nor [(C5Me5)Al]4 are capable of reducing dihydrogen on their own. To make the terminal hydride in higher yields, the reaction of [(C5Me5)2(MesO)U(THF)] with half an equivalent of diethylzinc generates [(C5Me5)2(MesO)U(CH2CH3)] or treatment of [(C5Me5)2U(i)(Me)] with KOMes forms [(C5Me5)2(MesO)U(CH3)], which followed by hydrogenation with either complex cleanly affords [(C5Me5)2(MesO)U(H)]. All complexes have been characterized by spectroscopic and structural methods and are rare examples of cooperative chemistry in f element chemistry, dihydrogen activation, and stable, terminal ethyl and hydride compounds with an f element.
Collapse
Affiliation(s)
- Robert J Ward
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | | | - Patrick Huang
- Department of Chemistry & Biochemistry, California State University East Bay Hayward CA 94542 USA
| | - Steven P Kelley
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - Justin R Walensky
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| |
Collapse
|
4
|
Li Y, Chen P, Zhu Q, Zhu C. Magnesium complexes supported by a dianionic double layer nitrogen-phosphorus ligand: a synthesis and reactivity study. Dalton Trans 2023; 52:15467-15474. [PMID: 37486332 DOI: 10.1039/d3dt01657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A heterobimetallic complex [MeN(CH2CH2NPiPr)2MgLiCl(THF)]2 (1) supported by a dianionic double layer nitrogen-phosphorus ligand was synthesized by the reaction of H2L1 (H2L1 = MeN(CH2CH2NHPiPr)2) with MgCl2 in the presence of n-BuLi. Reactions of complex 1 with 2 equivalents of CuI, AgI and AuCl·SMe2 led to the formation of heterobimetallic clusters [MeN(CH2CH2NPiPr)2MgCuI]2 (2), [MeN(CH2CH2NPiPr)2MgAgI]2 (3) and [MeN(CH2CH2NPiPr)2MgAuCl]2 (4), respectively. X-ray single-crystal diffraction analysis revealed that these complexes are dimers, which are composed of two [MeN(CH2CH2NPiPr)2Mg] units connected by coinage metals (i.e., Cu, Ag, and Au). The reactivity of 1 was further investigated and it was found that complex 1 could react with 4 equivalents of MeI, giving a complex [CH3N(CH2CH2NPiPr2Me)2MgI]+[I]- (5), which can be viewed as a magnesium complex supported by a neutral double layer nitrogen-phosphorus ligand (CH3N(CH2CH2NPiPr2Me)2). Complex 1 could also react with 2 equivalents of NaNH2, leading to the isolation of an amido anion bridged magnesium-sodium heterobimetallic cluster [MeN(CH2CH2NPiPr)2MgNaNH2]2 (6).
Collapse
Affiliation(s)
- Yafei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Pengfei Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Qin Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
5
|
Sun X, Shen J, Rajeshkumar T, Maron L, Zhu C. Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands. Inorg Chem 2023; 62:16077-16083. [PMID: 37733482 DOI: 10.1021/acs.inorgchem.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Ligands are known to play a crucial role in the construction of complexes with metal-metal bonds. Compared with metal-metal bonds involving d-block transition metals, knowledge of the metal-metal bonds involving f-block rare-earth metals still lags far behind. Herein, we report a series of complexes with cerium-transition-metal bonds, which are supported by two kinds of nitrogen-phosphorus ligands N[CH2CH2NHPiPr2]3 (VI) and PyNHCH2PPh2 (VII). The reactions of zerovalent group 10 metal precursors, Pd(PPh3)4 and Pt(PPh3)4, with the cerium complex supported by VI generate heterometallic clusters [N{CH2CH2NPiPr2}3Ce(μ-M)]2 (M = Pd, 2 and M = Pt, 3) featuring four Ce-M bonds; meanwhile, the bimetallic species [(PyNCH2PPh2)3Ce-M] (M = Ni, 5; M = Pd, 6; and M = Pt, 7) with a single Ce-M bond were isolated from the reactions of the cerium precursor 4 supported by VII with Ni(COD)2, Pd(PPh3)4, or Pt(PPh3)4, respectively. These complexes represent the first example of species with an RE-M bond between Ce and group 10 metals, and 2 and 3 contain the largest number of RE-M donor/acceptor interactions ever to have been observed in a molecule.
Collapse
Affiliation(s)
- Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
| | - Jinghang Shen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Jia C, She Y, Lu Y, Wu M, Yang X, Chen L, Li Y. Octalithium, Tetrasodium, and Decalithium Compounds Based on Pyrrolyl Ligands: Synthesis, Structures, and Activation of the C-H Bonds of Pyrrolyl Rings and C═N Bonds of a Series of Ligands by Organolithium Reagents. Inorg Chem 2023; 62:14072-14085. [PMID: 37578854 DOI: 10.1021/acs.inorgchem.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The organometallic compounds of lithium ions have garnered continuous interest as indispensable precursors for the syntheses of organometallic complexes of main-group metals, transition metals, lanthanide metals, and actinide metals. In this work, we present a strategy for the preparation of a series of polynuclear lithium complexes. This methodology features the utilization of organolithium reagents both as metal sources to coordinate with the ligands and as nucleophilic reagents to undergo nucleophilic addition to the C═N bonds of the ligands. Reaction of a ligand HL1 [HL1 = 2-(((1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)methylene)amino)phenol] with n-BuLi produced complex [Li8(L1a)4]·1.5Tol (1·1.5Tol) [H2L1a = 2-((1-(1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)pentyl)amino)phenol]. One prominent feature regarding the formation of 1·1.5Tol is the occurrence of nucleophilic addition of n-BuLi to the C═N bond of HL1, leading to the generation of a new [L1a]2- ligand that contains both aminophenol and 1-(2-pyrrolyl)alkylamine scaffolds. The developed protocol can be adapted to a series of organolithium reagents. Compounds [Li8(L1b)4] (2) and [Li8(L1c)4] (3) were afforded by treatment of HL1 with sec-BuLi and LiCH2SiMe3, respectively. Reaction of an analogous ligand HL2 [HL2 = 2-(((1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)methylene)amino)-4-methylphenol] with n-BuLi generated compound [Li8(L2a)4] (4). C═N bond activation was not observed in the reaction of HL1 with NaOtBu, and the complex [Na4(L1)4]·Tol (5·Tol) was obtained. A decanuclear complex [Li10(L3a)2(L3b)2] (6) was also prepared via the reaction of HL3 [HL3 = 2-(2-((((1H-pyrrol-2-yl)methylene)amino)methyl)-1H-pyrrol-1-yl)-N,N-dimethylethan-1-amine] with t-BuLi. A remarkable feature in terms of the synthesis of 6 is the simultaneous occurrence of hydrogen atom abstraction from the C-H bond of the pyrrolyl ring and nucleophilic addition to the C═N bond of the HL3 ligand by t-BuLi. A series of amines containing biologically and physiologically important moieties were achieved by hydrolysis of the crude products from the reactions of the HL1-HL3 ligands and organolithium reagents. This work provides an efficient approach to high-nuclearity lithium compounds as well as a series of amines.
Collapse
Affiliation(s)
- Chaohong Jia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yeye She
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yanhua Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mengxiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaohan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ling Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
7
|
Guo Y, Li X, Liu K, Hu K, Mei L, Chai Z, Gibson JK, Yu J, Shi W. Tetravalent Uranium and Thorium Complexes: Elucidating Disparate Reactivities of An IVCl 2 (An = U, Th) Supported by a Pyridine-Decorated Dianionic Ligand. Inorg Chem 2023. [PMID: 37377407 DOI: 10.1021/acs.inorgchem.3c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Although synthesis, reactivity, and bonding of U(IV) and Th(IV) complexes have been extensively studied, direct comparison of fully analogous compounds is rare. Herein, we report corresponding complexes 1-U and 1-Th, in which U(IV) and Th(IV) are supported by the tetradentate pyridine-decorated dianionic ligand N2NN' (1,1,1-trimethyl-N-(2-(((pyridin-2-ylmethyl)(2-((trimethylsilyl)amino)benzyl)amino)methyl)phenyl)silanamine). Although 1-U and 1-Th are structurally very similar, they display disparate reactivities with TMS3SiK (tris(trimethylsilyl)silylpotassium). The reaction of (N2NN')UCl2 (1-U) and 1 equiv of TMS3SiK in THF unexpectedly formed [Cl(N2NN')U]2O (2-U) featuring an unusual bent U-O-U moiety. In contrast, a salt elimination reaction between (N2NN')ThCl2 (1-Th) and 1 equiv of TMS3SiK led to thorium complex 2-Th, in which the pyridyl group has undergone a 1,4-addition nucleophilic attack. Complex 2-Th serves as a synthon for preparing dimetallic bis-azide complex 3-Th by reaction with NaN3. The complexes were characterized by X-ray crystal diffraction, solution NMR, FT-IR, and elemental analysis. Computations of the formation mechanism of 2-U from 1-U suggest reduced U(III) as a key intermediate for promoting the cleavage of the C-O bonds of THF. The inaccessible nature of Th(III) as an intermediate oxidation state explains the very different reactivity of 1-Th versus 1-U. Given that reactants 1-U and 1-Th and products 2-U and 2-Th all comprise tetravalent actinides, this is an unusual case of very disparate reactivity despite no net change in the oxidation state. Complexes 2-U and 3-Th provide a basis for the synthesis of other dinuclear actinide complexes with novel reactivity and properties.
Collapse
Affiliation(s)
- Yan Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaobo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Keener M, Maria L, Mazzanti M. Progress in the chemistry of molecular actinide-nitride compounds. Chem Sci 2023; 14:6493-6521. [PMID: 37350843 PMCID: PMC10283502 DOI: 10.1039/d3sc01435e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
The chemistry of actinide-nitrides has witnessed significant advances in the last ten years with a large focus on uranium and a few breakthroughs with thorium. Following the early discovery of the first terminal and bridging nitride complexes, various synthetic routes to uranium nitrides have since been identified, although the range of ligands capable of stabilizing uranium nitrides still remains scarce. In particular, both terminal- and bridging-nitrides possess attractive advantages for potential reactivity, especially in light of the recent development of uranium complexes for dinitrogen reduction and functionalization. The first molecular thorium bridged-nitride complexes have also been recently identified, anticipating the possibility of expanding nitride chemistry not only to low-valent thorium, but also to the transuranic elements.
Collapse
Affiliation(s)
- Megan Keener
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela Portugal
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
9
|
Su W, Rajeshkumar T, Xiang L, Maron L, Ye Q. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2-Insertion of CO into a U-N Bond. Angew Chem Int Ed Engl 2022; 61:e202212823. [PMID: 36256540 PMCID: PMC10099876 DOI: 10.1002/anie.202212823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/18/2022]
Abstract
In this contribution, we illustrate uranium complexes bearing a pendant borate (i.e. 1 and 2) or a pendant borane (i.e. 3 and 4) moiety via reaction of the highly strained uranacycle I with various 3-coordinate boranes. Complexes 3 and 4 represent the first examples of uranium complexes with a pendant borane Lewis acid. Moreover, complex 3 was capable of activation of CO, delivering a new CO activation mode, and an abnormal CO 1,2-insertion pathway into a U-N bond. The importance of the pendant borane moiety was confirmed by the controlled experiments.
Collapse
Affiliation(s)
- Wei Su
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, China.,Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nanoobjets, INSA, CNRS, UPS, Université de Toulouse, 31077, Toulouse, France
| | - Libo Xiang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China.,Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nanoobjets, INSA, CNRS, UPS, Université de Toulouse, 31077, Toulouse, France
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China.,Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Govindarajan R, Deolka S, Khusnutdinova JR. Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: bridging the opposites. Chem Sci 2022; 13:14008-14031. [PMID: 36540828 PMCID: PMC9728565 DOI: 10.1039/d2sc04263k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Heterobi- and multimetallic complexes providing close proximity between several metal centers serve as active species in artificial and enzymatic catalysis, and in model systems, showing unique modes of metal-metal cooperative bond activation. Through the rational design of well-defined, unsymmetrical ligand scaffolds, we create a convenient approach to support the assembly of heterometallic species in a well-defined and site-specific manner, preventing them from scrambling and dissociation. In this perspective, we will outline general strategies for the design of unsymmetrical ligands to support heterobi- and multimetallic complexes that show reactivity in various types of heterometallic cooperative bond activation.
Collapse
Affiliation(s)
- R Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
11
|
Fang W, Zhu Q, Zhu C. Recent advances in heterometallic clusters with f-block metal-metal bonds: synthesis, reactivity and applications. Chem Soc Rev 2022; 51:8434-8449. [PMID: 36164971 DOI: 10.1039/d2cs00424k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the heterometallic synergistic effects from different metals, heterometallic clusters are of great importance in small-molecule activation and catalysis. For example, both biological nitrogen fixation and photosynthetic splitting of water into oxygen are thought to involve multimetallic catalytic sites with d-block transition metals. Benefitting from the larger coordination numbers of f-block metals (rare-earth metals and actinide elements), heterometallic clusters containing f-block metal-metal bonds have long attracted the interest of both experimental and theoretical chemists. Therefore, a series of effective strategies or platforms have been developed in recent years for the construction of heterometallic clusters with f-block metal-metal bonds. More importantly, synergistic effects between f-block metals and transition metals have been observed in small-molecule activation and catalysis. This tutorial review highlights the recent advances in the construction of heterometallic molecular clusters with f-block metal-metal bonds and also their reactivities and applications. It is hoped that this tutorial review will persuade chemists to develop more efficient strategies to construct clusters with f-block metal-metal bonds and also further expand their applications with heterometallic synergistic effects.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Uranyl Analogue Complexes—Current Progress and Synthetic Challenges. INORGANICS 2022. [DOI: 10.3390/inorganics10080121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes, and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety. This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ- and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but also references gas-phase and low-temperature-matrix experiments, as well as computational studies that may lead to valuable insights.
Collapse
|
13
|
Wang P, Zhao Y, Zhu C. Photolysis, Thermolysis, and Reduction of a Uranium Azide Complex Supported by a Double-Layer N–P Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes. Nat Commun 2022; 13:3809. [PMID: 35778419 PMCID: PMC9249861 DOI: 10.1038/s41467-022-31582-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Uranium nitrides play important roles in dinitrogen activation and functionalization and in chemistry for nuclear fuels, but the synthesis and isolation of the highly reactive uranium(VI) nitrides remains challenging. Here, we report an example of transition metal (TM) stabilized U(VI) nitride complexes, which are generated by the photolysis of azide-bridged U(IV)-TM (TM = Rh, Ir) precursors. The U(V) nitride intermediates with bridged azide ligands are isolated successfully by careful control of the irradiation time, suggesting that the photolysis of azide-bridged U(IV)-TM precursors is a stepwise process. The presence of two U(VI) nitrides stabilized by three TMs is clearly demonstrated by an X-ray crystallographic study. These TM stabilized U(V) nitride intermediates and U(VI) nitride products exhibit excellent stability both in the solid-state and in THF solution under ambient light. Density functional theory calculations show that the photolysis necessary to break the N-N bond of the azide ligands implies excitation from uranium f-orbital to the lowest unoccupied molecular orbital (LUMO), as suggested by the strong antibonding N-(N2) character present in the latter.
Collapse
|
15
|
Zhu Z, Tang J. Metal–metal bond in lanthanide single-molecule magnets. Chem Soc Rev 2022; 51:9469-9481. [DOI: 10.1039/d2cs00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys recent critical advances in lanthanide SMMs, highlighting the influences of metal–metal bonds on the magnetization dynamics.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|