1
|
Kumari M, Thakur M, Sharma S, Sharma M, Choudhary VK, Sharma R, Sharma S, Kumari S, Kumar S. Vanadium complexes as potential metal-based antimicrobial drugs. J Biol Inorg Chem 2024; 29:685-706. [PMID: 39592458 DOI: 10.1007/s00775-024-02084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
Radical increase of antibiotic resistance among microbes has become a serious problem for clinics all over the world that has led to the need for search of novel types of antimicrobial drugs. Each year, researchers synthesize a multitude of compounds in pursuit of identifying potential chemotherapeutic agents through diverse methodological evaluations. Among the vast array of biologically significant compounds, coordination compounds exhibit a broad range of activities within biological systems. Chelation, in particular, induces significant alterations in the biological properties of ligands and the metal component, contributing to their efficacy. Chelation increases the lipophilicity of metal complexes as a result of which they are easily absorbed by the microorganisms, thus leading to their easy passage across cell membrane. The research and development in the field of metallodrugs can be advantageous to overcome the problem encountered in antibiotic resistance. The multifaceted involvement of vanadium relative to other biometals within biological systems, coupled with its comparatively lower toxicity, underscores its utility in the advancement of novel metal-based therapeutic agents. This review aims to delineate the biological significance of V(V/IV/III) complexes as antimicrobial agents. The amassed data indicate a correlation between the potency of vanadium complexes as antimicrobial agents and the oxidation state of the metal, with III being the least toxic and V representing the most toxic oxidation state of vanadium.
Collapse
Affiliation(s)
- Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Maridula Thakur
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India.
| | - Sonika Sharma
- Department of Chemistry, MLSM College, Sunder Nagar, Chaterokhri, Himachal Pradesh, India
| | - Mala Sharma
- Department of Chemistry, Sidharth Government College, Nadaun, Himachal Pradesh, India
| | - Vineet Kumar Choudhary
- Department of Chemistry, Shree Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Reena Sharma
- Department of Chemistry, ABVGIET, Pragatinagar, Shimla, Himachal Pradesh, India
| | - Shubham Sharma
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Shalima Kumari
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Sachin Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| |
Collapse
|
2
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
4
|
Zhou J, Chen P, Liang G, Zhou J, Ou J, Zhou P, Wang T, Zhang D, Zhou H. Heterobimetallic Zinc/Strontium Catalysis: Z/ E-Selective Asymmetric Conjugate Addition of 3-Acetoxy-2-oxindoles to Alkynones. J Org Chem 2024; 89:12307-12317. [PMID: 39190123 DOI: 10.1021/acs.joc.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A chiral Zn-Sr heterobimetallic catalyst system generated in situ has been developed for the first highly Z/E-selective asymmetric conjugate addition of 3-acetoxy-2-oxindoles to alkynones. Both terminal alkynones and nonterminal alkynones could be applied to the heterobimetallic catalytic system. The corresponding 3-alkenyl-3-acyloxy-2-oxindoles were obtained in moderate to excellent yields (55-99%) with high E:Z ratios (8:1-30:1) and high enantioselectivities (86-99% ee).
Collapse
Affiliation(s)
- Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Pengfei Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Wang
- Joint Training Base for Pharmacy Postgraduate Students of Chongqing Medical University and Chongqing Medleader Bio-Pharm Company, Ltd., Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Shen A, Xu J, Gao J, Cen S, Zhang Z. An Axially Chiral Quinoline-2-Carboxylic Acid-Cu Catalyst for Enantioselective Synthesis of C2- and C1-Symmetric BINOLs. J Org Chem 2024; 89:12842-12847. [PMID: 39129494 DOI: 10.1021/acs.joc.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The in situ dimeric coordination of two chiral ligands bearing quinoline-2-carboxylic acid units and substituted BINOL backbones with a copper ion generates a new chiral catalyst for oxidative homo- and cross-coupling of various 2-naphthols, enabling enantioselective synthesis of a broad range of highly useful diversely substituted C2- and C1-symmetric BINOLs in up to 96% yield with good to excellent enantioselectivities (up to 98:2 e.r.).
Collapse
Affiliation(s)
- Ahui Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jun Xu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jun Gao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Nguyen NH, Seo S, Jang J, Kim H, Shin S. Cu(I)-Catalyzed Atropselective Heterobiaryl Coupling Employing Umpoled Indoles. Org Lett 2024; 26:7149-7154. [PMID: 39162728 DOI: 10.1021/acs.orglett.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
An enantioselective Cu(I)-catalyzed coupling of N-carboxyindoles with various 2-naphthols and phenols for the synthesis of axially chiral arylindoles has been developed. Our mechanistic studies, bolstered by experimental evidence and DFT calculations, reveal a novel closed-shell mechanism involving outer-sphere attack of N-carboxyindoles on the Cu-bound naphthols. This mechanism allows for unprecedented diversity of 2-naphthols and phenols in C-H arylation. Enantiocontrol is achieved through center-to-axis chirality transfer via a key dearomatized naphthol intermediate, which prevents undesired epimerization of the C-C axis.
Collapse
Affiliation(s)
- Nguyen H Nguyen
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Sanghyup Seo
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jiwon Jang
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Liu ZL, Wang YX, Yang ZQ, Yang YH, Liu YP, Hao WJ, Jiang B. Construction of central and axial chirality via Pd(II)/Bim-catalyzed asymmetric dearomative Michael reaction of polycyclic tropones. Chem Commun (Camb) 2024; 60:8908-8911. [PMID: 39091214 DOI: 10.1039/d4cc03166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A highly enantioselective Pd/Bim-catalyzed dearomative Michael reaction applying polycyclic tropones as non-benzenoid aromatic Michael acceptors and arylboronic acids as aryl pronucleophiles has been developed. The bridged biaryls bearing central and axial chirality, including pentacyclic cyclohepta[b]indoles and 6,7-dihydrodibenzo[a,c][7]annulen-5-ones, are generally generated in good to high yields and excellent enantioselectivities and can be readily transformed into useful derivatives.
Collapse
Affiliation(s)
- Zi-Li Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Zi-Qi Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Heng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yin-Ping Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
8
|
Zuo QM, Wu MY, Han LB, Yang SD. Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols. Org Lett 2024; 26:5274-5279. [PMID: 38885640 DOI: 10.1021/acs.orglett.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chiral α-aminophosphonates with adjacent carbon and phosphonate stereogenic centers have been employed as ligands in the copper-catalyzed oxidative coupling of 2-naphthols, resulting in the production of chiral BINOLs in favorable yields and moderate to good enantiomeric excess. This represents the first application of chiral P-based ligands to enable such a transformation. The synthesis of these chiral α-aminophosphonate ligands offers a significant advantage over approaches that typically necessitate elaborate synthetic processes for chiral ligand production.
Collapse
Affiliation(s)
- Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Ming-Ying Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials and Functional Molecular Synthesis, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- ZhejiangYangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Wang SH, Wei SQ, Zhang Y, Zhang XM, Zhang SY, Dai KL, Tu YQ, Lu K, Ding TM. Atroposelective synthesis of biaxial bridged eight-membered terphenyls via a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization of phenols. Nat Commun 2024; 15:4591. [PMID: 38816373 PMCID: PMC11139896 DOI: 10.1038/s41467-024-48858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Bridged chiral biaryls are axially chiral compounds with a medium-sized ring connecting the two arenes. Compared with plentiful methods for the enantioselective synthesis of biaryl compounds, synthetic approaches for this subclass of bridged atropisomers are limited. Here we show an atroposelective synthesis of 1,3-diaxial bridged eight-membered terphenyl atropisomers through an Co/SPDO (spirocyclic pyrrolidine oxazoline)-catalyzed aerobic oxidative coupling/desymmetrization reaction of prochiral phenols. This catalytic desymmetric process is enabled by combination of an earth-abundant Co(OAc)2 and a unique SPDO ligand in the presence of DABCO (1,4-diaza[2.2.2]bicyclooctane). An array of diaxial bridged terphenyls embedded in an azocane can be accessed in high yields (up to 99%) with excellent enantio- (>99% ee) and diastereoselectivities (>20:1 dr).
Collapse
Affiliation(s)
- Shuang-Hu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi-Qiang Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun-Long Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
11
|
Salem MSH, Sharma R, Suzuki S, Imai Y, Arisawa M, Takizawa S. Impact of helical elongation of symmetric oxa[n]helicenes on their structural, photophysical, and chiroptical characteristics. Chirality 2024; 36:e23673. [PMID: 38698568 DOI: 10.1002/chir.23673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The adjustment of the main helical scaffold in helicenes is a fundamental strategy for modulating their optical features, thereby enhancing their potential for diverse applications. This work explores the influence of helical elongation (n = 5-9) on the structural, photophysical, and chiroptical features of symmetric oxa[n]helicenes. Crystal structure analyses revealed structural variations with helical extension, impacting torsion angles, helical pitch, and packing arrangements. Through theoretical investigations using density functional theory (DFT) calculations, the impact of helical extension on aromaticity, planarity distortion, and heightened chiral stability were discussed. Photophysical features were studied through spectrophotometric analysis, with insights gained through time-dependent DFT (TD-DFT) calculations. Following optical resolution via chiral high-performance liquid chromatography (HPLC), the chiroptical properties of both enantiomers of oxa[7]helicene and oxa[9]helicene were investigated. A slight variation in the main helical scaffold of oxa[n]helicenes from [7] to [9] induced an approximately three-fold increase in dissymmetry factors with the biggest values of|glum| of oxa[9]helicene (2.2 × 10-3) compared to|glum|of oxa[7]helicene (0.8 × 10-3), findings discussed and supported by TD-DFT calculations.
Collapse
Grants
- 24K17681 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21A204 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21H05217 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 22K06502 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- Japan Society for the Promotion of Science (JSPS)
- JPMJCR20R1 Core Research for Evolutionary Science and Technology (JST CREST)
- Hoansha Foundation
Collapse
Affiliation(s)
- Mohamed S H Salem
- SANKEN, Osaka University, Osaka, Japan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Rubal Sharma
- SANKEN, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Seika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
12
|
Chen RQ, Wang ST, Liu YJ, Zhang J, Fang WH. Assembly of Homochiral Aluminum Oxo Clusters for Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:7524-7532. [PMID: 38451059 DOI: 10.1021/jacs.3c13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.
Collapse
Affiliation(s)
- Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
14
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
15
|
Khalid MI, Salem MSH, Takizawa S. Synthesis and Structural and Optical Behavior of Dehydrohelicene-Containing Polycyclic Compounds. Molecules 2024; 29:296. [PMID: 38257209 PMCID: PMC10819569 DOI: 10.3390/molecules29020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Dehydrohelicene-based molecules stand out as highly promising scaffolds and captivating chiroptical materials, characterized by their unique chirality. Their quasi-helical π-conjugated molecular architecture, featuring successively ortho-annulated aromatic rings, endows them with remarkable thermal stability and optical properties. Over the past decade, diverse approaches have emerged for synthesizing these scaffolds, reinvigorating this field, with anticipated increased attention in the coming years. This review provides a comprehensive overview of the historical evolution of dehydrohelicene chemistry since the pioneering work of Zander and Franke in 1969 and highlights recent advancements in the synthesis of various molecules incorporating dehydrohelicene motifs. We elucidate the intriguing structural features and optical merits of these molecules, occasionally drawing comparisons with their helicene or circulene analogs to underscore the significance of the bond between the helical termini.
Collapse
Affiliation(s)
- Md. Imrul Khalid
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mohamed S. H. Salem
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
| |
Collapse
|
16
|
Yoshimura T, Onda KI, Matsuo JI. Asymmetric Cycloaddition Reactions of Aryne Intermediates with a Chiral Carbon-Carbon Axis: Syntheses of Axially Chiral Biaryl Compounds. Org Lett 2023. [PMID: 38055630 DOI: 10.1021/acs.orglett.3c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An asymmetric synthesis via an axially chiral arylaryne intermediate was developed. A cycloaddition reaction with various arynophiles was used to obtain chiral biaryl compounds while preserving the enantiomeric excess (ee) of a precursor even though the reaction proceeds through an arylaryne intermediate, whose chirality decreases on a time-dependent basis. High chiral transfer from a precursor to a product was observed not only at low temperature (-78 °C) but also at room temperature.
Collapse
Affiliation(s)
- Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-Ichi Onda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
17
|
Pang L, Wang C, Ma C, Liu J, Shi M, Yao C, Yu J, Li Q. Palladium-Catalyzed Modular Assembly of P-Stereogenic and Axially Chiral Phosphinooxazoles (PHOX) Ligands by C-P Bond Cleavage/Intermolecular C(sp 2)-H Bond Functionalization. Org Lett 2023; 25:7705-7710. [PMID: 37831783 DOI: 10.1021/acs.orglett.3c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Chiral P,N-ligands are of great interest and importance in the fields of metal-catalyzed enantioselective transformations and have found numerous applications spanning drug and polymer synthesis. Here, modular assembly of diverse P-stereogenic and axially chiral phosphinooxazoles ligands is achieved through palladium-catalyzed asymmetric cleavage of C-P bond/intermolecular C-H bond functionalization in high atroposelectivities and diastereoselectivities of up to >99% ee and >25:1 dr. This protocol features broad substrate scope and provides an avenue for facile construction of new P-stereogenic and axially chiral phosphinooxazoles ligands directly from the phosphonium salts and benzoxazoles/benzothiazoles. Evaluation of the synthesized P-stereogenic and axially chiral phosphinooxazoles ligands in two model catalytic asymmetric reactions illustrates the potential of our strategy to access valuable chiral molecules.
Collapse
Affiliation(s)
- Liangzhi Pang
- Department of Applied Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chun Wang
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Congyue Ma
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Jiaojiao Liu
- Department of Applied Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengke Shi
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chuanzhi Yao
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
18
|
Wang HY, Li ZC, Zhang CL, Ye S. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Axially Chiral α-Carbolinones via Heterocycle Formation. J Org Chem 2023; 88:11913-11923. [PMID: 37498087 DOI: 10.1021/acs.joc.3c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
An NHC-catalyzed atroposelective synthesis of axially chiral α-carbolinones from α,β-unsaturated iminoindole derivatives and α-chloroaldehydes was developed. The reaction proceeds through a cascade process including [4 + 2] annulation and then oxidative dehydrogenation with concomitant central-to-axial chirality conversion under mild conditions. The developed method opens a new avenue to efficiently access axially chiral α-carbolinones in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Chen P, Chen HN, Wong HNC, Peng XS. Recent advances in iron-catalysed coupling reactions for the construction of the C(sp 2)-C(sp 2) bond. Org Biomol Chem 2023. [PMID: 37485859 DOI: 10.1039/d3ob00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The advancement of transition-metal-catalyzed coupling reactions has been demonstrated as a highly effective strategy for the formation of carbon-carbon bonds, which serve as the fundamental basis for organic synthetic chemistry. Given that iron represents one of the most economical and ecologically sustainable metallic elements available, the exploration and enhancement of iron-catalysed coupling reactions have garnered increasing interest within the scientific community. In recent years, numerous iron-catalysed reactions have been reported, showcasing their efficacy in establishing C-C bonds. In this minireview, we present a systematic analysis of C(sp2)-C(sp2) bond formation via iron-catalysed coupling reactions as documented in the extant literature.
Collapse
Affiliation(s)
- Peng Chen
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.
| | - Hao-Nan Chen
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen 518000, China.
| | - Henry N C Wong
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen 518000, China.
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Xiao-Shui Peng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen 518000, China.
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Chen ZH, Li TZ, Wang NY, Ma XF, Ni SF, Zhang YC, Shi F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N'-Bisindoles. Angew Chem Int Ed Engl 2023; 62:e202300419. [PMID: 36749711 DOI: 10.1002/anie.202300419] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Han Chen
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Fang Ma
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
21
|
Salem MS, Khalid MI, Sasai H, Takizawa S. Two-pot synthesis of unsymmetrical hetero[7]helicenes with intriguing optical properties. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
da Silva EM, Vidal HDA, Januário MAP, Corrêa AG. Advances in the Asymmetric Synthesis of BINOL Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010012. [PMID: 36615207 PMCID: PMC9821997 DOI: 10.3390/molecules28010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BINOL derivatives have shown relevant biological activities and are important chiral ligands and catalysts. Due to these properties, their asymmetric synthesis has attracted the interest of the scientific community. In this work, we present an overview of the most efficient methods to obtain chiral BINOLs, highlighting the use of metal complexes and organocatalysts as well as kinetic resolution. Further derivatizations of BINOLs are also discussed.
Collapse
|