1
|
Perets EA, Santiago T, Neu J, Yan ECY. Water-protein interactions as a driver of phase separation, biology, and disease. Biophys J 2024; 123:3859-3862. [PMID: 39402838 PMCID: PMC11617622 DOI: 10.1016/j.bpj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Affiliation(s)
- Ethan A Perets
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Jens Neu
- Department of Physics, University of North Texas, Denton, Texas
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Morsali MA, Shekaari H, Golmohammadi B. Hydration behavior of L-proline in the presence of mono, bis, tris-(2-hydroxyethyl) ammonium acetate protic ionic liquids: Thermophysical properties. Sci Rep 2024; 14:27229. [PMID: 39516508 PMCID: PMC11549441 DOI: 10.1038/s41598-024-77341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The hydration behavior of amino acids, essential for biological macromolecules, is influenced by ammonium biomaterials. The protic ionic liquids (PILs) are gaining attention in the food and pharmaceutical industries due to their nontoxicity and adjustable properties. Thus, study of the amino acids, such as L-proline, in the presence of PILs is crucial for understanding their hydration behavior. In this work, the effect of PILs, including mono, bis, tris (2-hydroxyethyl)ammonium acetate protic ionic liquids that might be naturally produced in human body, on L-proline hydration behavior was studied using COSMO calculations and thermophysical measurements. Measurements were the density, speed of sound, viscosity, and refractive index data of the solutions (L-proline + PILs + water) at various PIL concentrations at temperatures (298.15 to 318.15) K and under atmospheric pressure. The study indicates L-proline has weaker interactions with water compared to PILs ([2-HEA][Ac], [bis-2-HEA][Ac], and [tris-2-HEA][Ac]) due to its compact structure and lower negative dielectric energy. PILs interact more strongly with water through hydrogen bonding. Increasing temperature affects L-proline's hydration layer, releasing more water molecules compared to PIL solutions. This effect is more pronounced with [tris-2-HEA][Ac], likely due to its larger size and complex structure. While L-proline promotes an ordered water structure, PILs can disrupt this by rearranging water molecules and forming their own hydrogen bonds.
Collapse
Affiliation(s)
- Mohammad Amin Morsali
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Behrang Golmohammadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Perets EA, Konstantinovsky D, Santiago T, Videla PE, Tremblay M, Velarde L, Batista VS, Hammes-Schiffer S, Yan ECY. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. J Chem Phys 2024; 161:095104. [PMID: 39230381 PMCID: PMC11377083 DOI: 10.1063/5.0220479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo E Videla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Cecchet F. Light on the interactions between nanoparticles and lipid membranes by interface-sensitive vibrational spectroscopy. Colloids Surf B Biointerfaces 2024; 241:114013. [PMID: 38865867 DOI: 10.1016/j.colsurfb.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.
Collapse
Affiliation(s)
- Francesca Cecchet
- Laboratory of Lasers and Spectroscopies (LLS), Namur Institute of Structured Matter (NISM) and NAmur Institute for Life Sciences (NARILIS), University of Namur (UNamur), Belgium.
| |
Collapse
|
5
|
Zheng X, Ni Z, Pei Q, Wang M, Tan J, Bai S, Shi F, Ye S. Probing the Molecular Structure and Dynamics of Membrane-Bound Proteins during Misfolding Processes by Sum-Frequency Generation Vibrational Spectroscopy. Chempluschem 2024; 89:e202300684. [PMID: 38380553 DOI: 10.1002/cplu.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid β, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Pouliquen DL. The biophysics of water in cell biology: perspectives on a keystone for both marine sciences and cancer research. Front Cell Dev Biol 2024; 12:1403037. [PMID: 38803391 PMCID: PMC11128620 DOI: 10.3389/fcell.2024.1403037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The biophysics of water, has been debated over more than a century. Although its importance is still underestimated, significant breakthroughs occurred in recent years. The influence of protein condensation on water availability control was documented, new findings on water-transport proteins emerged, and the way water molecules rearrange to minimize free energy at interfaces was deciphered, influencing membrane thermodynamics. The state of knowledge continued to progress in the field of deep-sea marine biology, highlighting unknown effects of high hydrostatic pressure and/or temperature on interactions between proteins and ligands in extreme environments, and membrane structure adaptations. The role of osmolytes in protein stability control under stress is also discussed here in relation to fish egg hydration/buoyancy. The complexity of water movements within the cell is updated, all these findings leading to a better view of their impact on many cellular processes. The way water flow and osmotic gradients generated by ion transport work together to produce the driving force behind cell migration is also relevant to both marine biology and cancer research. Additional common points concern water dynamic changes during the neoplastic transformation of cells and tissues, or embryo development. This could improve imaging techniques, early cancer diagnosis, and understanding of the molecular and physiological basis of buoyancy for many marine species.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, CRCINA, Nantes Université, University of Angers, Angers, France
| |
Collapse
|
7
|
Konstantinovsky D, Santiago T, Tremblay M, Simpson GJ, Hammes-Schiffer S, Yan ECY. Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water. J Chem Phys 2024; 160:055102. [PMID: 38341693 PMCID: PMC10846909 DOI: 10.1063/5.0181718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.
Collapse
Affiliation(s)
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Somasundaran SM, Kompella SVK, Madapally HV, Vishnu EK, Balasubramanian S, Thomas KG. Red Circularly Polarized Luminescence from Dimeric H-Aggregates of Acridine Orange by Chiral Induction. J Phys Chem Lett 2024; 15:507-513. [PMID: 38190655 DOI: 10.1021/acs.jpclett.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Understanding the mechanism of chirality transfer from a chiral surface to an achiral molecule is essential for designing molecular systems with tunable chiroptical properties. These aspects are explored herein using l- and d-isomers of alkyl valine amphiphiles, which self-assemble in water as nanofibers possessing a negative surface charge. An achiral chromophore, acridine orange, upon electrostatic binding on these surfaces displays mirror-imaged bisignated circular dichroism and red-emitting circularly polarized luminescence signals with a high dissymmetry factor. Experimental and computational investigations establish that the chiroptical properties emerge from surface-bound asymmetric H-type dimers of acridine orange, further supported by fluorescence lifetime imaging studies. Specifically, atomistic molecular dynamics simulations show that the experimentally observed chiral signatures have their origin in van der Waals interactions between acridine orange dimers and the amphiphile head groups as well as in the extent of solvent exposure of the chromophore.
Collapse
Affiliation(s)
- Sanoop Mambully Somasundaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Hridya Valia Madapally
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|