1
|
Chen L, Li P. Organocatalytic Stereodivergent Dearomatization and N-Acylation of 2-Amino-3-subsituted Indoles. Org Lett 2024; 26:10988-10992. [PMID: 39635880 DOI: 10.1021/acs.orglett.4c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organocatalytic chemo- and enantioselective reactions of 2-amino-3-subsituted indoles have been achieved for the first time. Via asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates, organocatalytic enantioselective dearomatization of 2-amino-3-subsituted indoles afforded an array of enantioenriched 3,3-disubstituted indolin-2-imines bearing a quaternary carbon stereocenter in 34-79% yields with 61-91% ee. With Boc2O as reaction partner, the organocatalytic enantioselective N-acylation of 2-amino-3-subsituted indoles was established to furnish C-N axially chiral products in 22-98% yields with 73-92% ee.
Collapse
Affiliation(s)
- Lunfeng Chen
- School of Chemistry and Chemical Engineering, Heilongjiang Provincial, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
2
|
Zhang C, Dong L. Iridium-catalyzed tandem olefination/aza-Michael reaction: rapid access to N-N functionalized hydrazides. Org Biomol Chem 2024. [PMID: 39601785 DOI: 10.1039/d4ob01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An Ir-catalyzed tandem olefination/aza-Michael reaction of protected benzoylhydrazine derivatives with olefins under mild conditions has been developed. This method can be successfully applied to the construction of various structurally N-N-functionalized hydrazide derivatives bearing the α,β-unsaturated side chain in good to excellent yields. In particular, the deaminoprotected products can be used as potential precursors for the construction of N-N axially chiral compounds.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
4
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
6
|
Qu H, Huo C, Ge J, Xue X, Gu Z, Deng R. Symmetric Anion Mediated Dynamic Kinetic Asymmetric Knoevenagel Reaction for N-C and N-N Atropisomers Synthesis. Angew Chem Int Ed Engl 2024; 63:e202410012. [PMID: 38958836 DOI: 10.1002/anie.202410012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
A symmetric anion mediated dynamic kinetic asymmetric Knoevenagel reaction was established as a general and efficient method for accessing both N-C and N-N atropisomers. The resulting highly enantio-pure pyridine-2,6(1H,3H)-diones exhibit diverse structures and functional groups. The key to excellent regio- and remote enantiocontrol could be owed to the hydrogen bond between the enolate anion and triflamide block of the organocatalyst. This connected the enolate anion and iminium cation by a chiral backbone. The mechanism investigation via control experiments, correlation analysis, and density functional theory calculations further revealed how the stereochemical information was transferred from the catalyst into the axially chiral pyridine-2,6(1H,3H)-diones. The synthetic applications also demonstrated the reaction's potential.
Collapse
Affiliation(s)
- Hongyu Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chenyang Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruixian Deng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Li TZ, Wu SF, Wang NY, Hong CS, Zhang YC, Shi F. Catalytic Atroposelective Synthesis of N-N Axially Chiral Indolylamides. J Org Chem 2024; 89:12559-12575. [PMID: 39189641 DOI: 10.1021/acs.joc.4c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic atroposelective synthesis of N-N axially chiral indolylamides was established via dynamic kinetic resolution, which makes use of chiral Lewis base-catalyzed asymmetric acylation of N-acylaminoindoles as a new type of platform molecule with anhydrides. By this strategy, a series of N-N axially chiral indolylamides were synthesized in overall good yields (up to 98%) with excellent enantioselectivities (up to 99% ee). Moreover, some of these N-N axially chiral indolylamides display some extent of anticancer activity, which demonstrates their potential application in medicinal chemistry. Therefore, this work has not only provided a new strategy for the synthesis of N-N axially chiral monoaryl indoles but also offered a new member of N-N axially chiral monoaryl indoles with configurational stability and promising application, thereby solving the challenges in atroposelective synthesis and application of N-N axially chiral monoaryl indoles.
Collapse
Affiliation(s)
- Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chen-Shengping Hong
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Wang X, Wang SJ, Xin X, An H, Tu Z, Yang H, Wong MW, Lu S. Enantioconvergent and diastereoselective synthesis of atropisomeric hydrazides bearing a cyclic quaternary stereocenter through ternary catalysis. Chem Sci 2024; 15:13240-13249. [PMID: 39183900 PMCID: PMC11339960 DOI: 10.1039/d4sc03190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024] Open
Abstract
An efficient and highly enantioconvergent and diastereoselective ternary catalysis in a one-pot process is reported, which represents an integrated strategy for the synthesis of atropisomeric hydrazides with defined vicinal central and axial chirality from readily available racemic α-amino-ynones, azodicarboxylates, and Morita-Baylis-Hillman (MBH) carbonates. This method utilizes in situ-generated racemic pyrrolin-4-ones via hydroamination of racemic α-amino-ynones by AuCl catalysis as a novel and versatile C1 synthon, which engage commercially available azodicarboxylates to generate amination products in high yields and uniformly excellent enantioselectivities under the catalysis of a chiral phosphoric acid. Following amination, N-alkylation catalyzed by diastereoselective organocatalyst afforded axially chiral hydrazides with excellent diastereoselectivities (>98 : 2 dr). The synthetic utility of the amination products and axially chiral hydrazides was also demonstrated by their facile conversion to diverse molecules in high yields with excellent stereopurity. Density functional theory calculations were performed to understand the origin of diastereoselectivity.
Collapse
Affiliation(s)
- Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xiaolan Xin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Hui Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
9
|
Kitagawa O. Structural Chemistry of C-N Axially Chiral Compounds. J Org Chem 2024; 89:11089-11099. [PMID: 39087953 DOI: 10.1021/acs.joc.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In the last several years, atropisomers owing to the rotational restriction around a C-N single bond (C-N axially chiral compounds) have attracted significant attention in the field of synthetic organic chemistry. In particular, the highly enantioselective synthesis of various C-N axially chiral compounds and their application to asymmetric reactions have been reported by many groups. On the other hand, studies on the structural chemistry of C-N axially chiral compounds have attracted scant attention in comparison with synthetic studies. For over 25 years, our group has explored asymmetric synthesis of C-N axially chiral compounds and their synthetic application. In the course of these synthetic studies, we found several notable structural properties in relation to the C-N bond rotation and an association of enantiomers (the relationship between the rotational stability and the structure or electronic effect, the chirality-dependent halogen bond, and the self-disproportionation of enantiomers). Furthermore, on the basis of these structural properties, the development of acid-mediated molecular rotors and the synthesis of isotopic atropisomers possessing high stereochemical purity and rotational stability were achieved. Through this Perspective, I wish to make the chemistry community aware that C-N axially chiral compounds are attractive molecules from the viewpoints of both synthetic organic chemistry and structural chemistry.
Collapse
Affiliation(s)
- Osamu Kitagawa
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| |
Collapse
|
10
|
Xie ZY, Tang C, Li L, Zhou Z, Zou J, Qian PC. Rhodium-Catalyzed Regioselective [4 + 2] Cycloaddition of Ynamines and 2-(Cyanomethyl)phenylboronates. Org Lett 2024; 26:6586-6590. [PMID: 39079756 DOI: 10.1021/acs.orglett.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A rhodium-catalyzed [4 + 2] cycloaddition of ynamines and 2-(cyanomethyl)phenylboronates has been developed, leading to efficient and excellent regioselective synthesis of valuable indole-linked aromatic compounds in a concise and flexible approach. Interestingly, this strategy was successful in the construction of C···N axially chiral indoles with high enantiocontrol by the introduction of a new phosphoramidite ligand (Xie-Phos).
Collapse
Affiliation(s)
- Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Conghui Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zijun Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Zou
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- College of Medicine & Pharmaceutical Enginering, Taizhou Vocational & Technical College, Taizhou 318000, China
| |
Collapse
|
11
|
Ying M, Wang K, Yan W, Pu M, Lin L. Stable Axially Chiral Cyclohexylidenes from Catalytic Asymmetric Knoevenagel Condensation. Chemistry 2024; 30:e202401243. [PMID: 38711202 DOI: 10.1002/chem.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Axially chiral cycloalkylidenes are interesting but less developed axially chiral molecules. Here, a bispidine-based chiral amine catalytic system was developed to promote efficiently the asymmetric Knoevenagel condensation of N-protected oxindoles and benzofuranones with 4-substituted cyclohexanones. A variety of alkylidenecycloalkanes with stable axial chirality were obtained in good yields and fairly good er (enantiomeric ratio). Based on the absolute configuration determination of product and DFT calculations, a possible mechanism of stereoselective induction was proposed.
Collapse
Affiliation(s)
- Meijia Ying
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Kaixuan Wang
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Wenjun Yan
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
12
|
Parmar D, Kumar R, Sharma U. Chiral amino acids: evolution in atroposelective C-H activation. Org Biomol Chem 2024; 22:5032-5051. [PMID: 38837336 DOI: 10.1039/d4ob00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
13
|
Huang T, Qian C, Li P. Organocatalytic C sp2-O Amination of Quinolin-4(1 H)-ones with 3-Alkynyl-3-hydroxyisoindolinones. J Org Chem 2024; 89:9086-9091. [PMID: 38815157 DOI: 10.1021/acs.joc.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The Brønsted acid catalytic Csp2-O amination of quinolin-4(1H)-ones with 3-alkynyl-3-hydroxyisoindolinones as animation reagents has been developed. The cascade dehydration/conjugate addition/intramolecular annulation/ring-opening reaction proceeded smoothly to afford a broad scope of aminated products with high efficiency. Furthermore, the enantioselective construction of Csp2-N atropisomers was also investigated in the presence of chiral phosphoric acid. Importantly, this work not only realized the organocatalytic Csp2-O amination of quinolin-4(1H)-ones but also laid the foundation for directly asymmetric synthesis of Csp2-N atropisomers.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenxiao Qian
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Ge FB, Lu CJ, Chen X, Yao W, An M, Jiang YK, Xu LP, Liu RR. Enantioselective Nickel-Catalyzed Denitrogenative Transannulation En Route to N-N Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202400441. [PMID: 38587149 DOI: 10.1002/anie.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.
Collapse
Affiliation(s)
- Fang-Bei Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Xiao Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wang Yao
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Mei An
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Yu-Kun Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
15
|
Sun Y, Sun L, Zhang S, Zhang Z, Wang T. Synthesis of C-N Axially Chiral N-Arylbenzo[ g]indoles via a Central-to-Axial Chirality Conversion Strategy. Org Lett 2024. [PMID: 38780223 DOI: 10.1021/acs.orglett.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gold-catalyzed cascade cyclization of diynes for the synthesis of previously unexplored C-N axially chiral N-arylbenzo[g]indoles was described. The transformation was achieved via a central-to-axial chirality conversion strategy. The chiral conversion exhibited high efficiency. Besides single C-N chiral axis, N-arylbenzo[g]indoles bearing both C-N and C-C chiral axes were also afforded. The title compound derived monophosphine ligand was prepared and was evaluated in Pd-catalyzed asymmetric allylic substitutions, showing excellent chiral induction ability.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Lingzhi Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Shaoting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| |
Collapse
|
16
|
Wang J, Pan D, Wang F, Yu S, Huang G, Li X. Pd-catalyzed asymmetric Larock reaction for the atroposelective synthesis of N─N chiral indoles. SCIENCE ADVANCES 2024; 10:eado4489. [PMID: 38728391 PMCID: PMC11086601 DOI: 10.1126/sciadv.ado4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Atropisomeric indoles defined by a N─N axis are an important class of heterocycles in synthetic and medicinal chemistry and material sciences. However, they remain heavily underexplored due to limited synthetic methods and challenging stereocontrol over the short N─N bonds. Here, we report highly atroposelective access to N─N axially chiral indoles via the asymmetric Larock reaction. This protocol leveraged the powerful role of chiral phosphoramidite ligand to attenuate the common ligand dissociation in the original Larock reaction, forming N─N chiral indoles with excellent functional group tolerance and high enantioselectivity via palladium-catalyzed intermolecular annulation between readily available o-iodoaniline and alkynes. The multifunctionality in the prepared chiral indoles allowed diverse post-coupling synthetic transformations, affording a broad array of functionalized chiral indoles. Experimental and computational studies have been conducted to explore the reaction mechanism, elucidating the enantio-determining and rate-limiting steps.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Songjie Yu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| |
Collapse
|
17
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
18
|
Deng R, Dong P, Ge J, Zhang W, Xue X, Duan L, Shi L, Gu Z. Regio- and Atroposelective Ring-Opening of 1H-Benzo[4,5]oxazolopyridinones. Angew Chem Int Ed Engl 2024; 63:e202402231. [PMID: 38407456 DOI: 10.1002/anie.202402231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The development of new methods for regio- and stereoselective activation of C-O bonds in ethers holds significant promise for synthetic chemistry, offering advantages in terms of environmental sustainability and economic efficiency. Moreover, the C-N atropisomers represent a fascinating and crucial chiral system, extensively found in natural products, pharmaceutical leads, and the frameworks of advanced materials. In this work, we have introduced a nickel-catalyzed regio- and enantioselective carbon-oxygen arylation reaction for atroposelective synthesis of N-arylisoquinoline-1,3(2H,4H)-diones. The high regioselectivity of C-O cleavage benefits from the high stability of the in situ formed (amido)ethenolate via oxidative addition. Additionally, the self-activation of the aryl C-O bond facilitates the reaction under mild conditions, leading to outstanding enantioselectivities. The diverse post-functionalizations of the axially chiral isoquinoline-1,3(2H,4H)-diones further highlighted the utility of this protocol in preparing valuable C-N atropisomers, including the chiral phosphine ligands.
Collapse
Affiliation(s)
- Ruixian Deng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Puyang Dong
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjing Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Longhui Duan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linlin Shi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Qian C, Huang J, Huang T, Song L, Sun J, Li P. Organocatalytic enantioselective synthesis of C sp2-N atropisomers via formal C sp2-O bond amination. Chem Sci 2024; 15:3893-3900. [PMID: 38487218 PMCID: PMC10935709 DOI: 10.1039/d3sc06707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
Compared with well-developed construction of Csp2-Csp2 atropisomers, the synthesis of Csp2-N atropisomers remains in its infancy, which is recognized as both appealing and challenging. Herein, we achieved the first organocatalyzed asymmetric synthesis of Csp2-N atropisomers by formal Csp2-O amination. With the aid of a suitable acid, 3-alkynyl-3-hydroxyisoindolinones reacted smoothly with 1-methylnaphthalen-2-ols to afford a wide range of atropisomers by selective formation of the Csp2-N axis. Particularly, both the kinetic (Z)-products and the thermodynamic (E)-products could be selectively formed. Furthermore, the rarely used combination of two chiral Brønsted acid catalysts achieved excellent enantiocontrol, which is intriguing and unusual in organocatalysis. Based on control experiments and DFT calculations, a cascade dehydration/addition/rearrangement process was proposed. More importantly, this work provided a new plat-form for direct atroposelective construction of the chiral Csp2-N axis.
Collapse
Affiliation(s)
- Chenxiao Qian
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Jing Huang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Tingting Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
20
|
Zhang G, Yang B, Yang J, Zhang J. Pd-Catalyzed Asymmetric Larock Indole Synthesis to Access Axially Chiral N-Arylindoles. J Am Chem Soc 2024; 146:5493-5501. [PMID: 38350095 DOI: 10.1021/jacs.3c13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Larock indole synthesis is one of the most straightforward and efficient methods for the synthesis of indoles; however, there has been no asymmetric version yet for the construction of indole-based axially chiral N-arylindoles since its initial report in 1991. Herein we report the first example of an asymmetric Larock indole synthesis by employing a chiral sulfinamide phosphine (SadPhos) ligand (Ming-Phos) with palladium. It allows rapid construction of a wide range of axially chiral N-arylindole compounds in good yields up to 98:2 er. The application of this unique chiral scaffold as an organocatalyst is promising. Furthermore, a kinetic study has revealed that the alkyne migratory insertion is the rate-determining step, which has been proven by the density functional theory (DFT) calculations. Additionally, DFT studies also suggest that the N-C dihedral difference caused by the steric hindrance of the ligand contributes to enantioselectivity control.
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bin Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
21
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
22
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
24
|
Feng J, Liu RR. Catalytic Asymmetric Synthesis of N-N Biaryl Atropisomers. Chemistry 2024; 30:e202303165. [PMID: 37850396 DOI: 10.1002/chem.202303165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|
25
|
Wei Y, Sun F, Li G, Xu S, Zhang M, Hong L. Enantioselective Synthesis of N-N Amide-Pyrrole Atropisomers via Paal-Knorr Reaction. Org Lett 2023. [PMID: 38109522 DOI: 10.1021/acs.orglett.3c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The catalytic asymmetric construction of monoheteroaryl N-N axially chiral compounds and chiral five-membered aryl-based scaffolds remains challenging. Herein, we present a highly efficient enantioselective synthesis of monoheteroaryl N-N atropisomers via an asymmetric Paal-Knorr reaction, affording a diverse array of N-N amide-pyrrole atropisomers with excellent enantioselectivities. Gram-scale synthesis and post-transformations of the product demonstrated the synthesis utility of this method. Racemization experiments confirmed the configurational stability of these N-N axially chiral products. This study not only provides the first de novo cyclization example for accessing an asymmetric monoheteroaryl N-N scaffold but also offers a new member of the N-N atropisomer family with potential synthetic and medicinal applications.
Collapse
Affiliation(s)
- Yuanlin Wei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - ShiYu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|