1
|
Malhotra V, Elvers BJ, Dolai R, Chrysochos N, Bandaru SSM, Gangber T, Britto NJ, Krummenacher I, Rajaraman G, Braunschweig H, Schulzke C, Jana A. Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids. J Am Chem Soc 2024; 146:29481-29490. [PMID: 39425654 DOI: 10.1021/jacs.4c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Herein, we report nickel(0)-catalyzed cross-coupling reactions of NHC/CAAC-based carbodicarbene (NHC = N-heterocyclic carbene and CAAC = cyclic(alkyl)(amino)carbene) with different aryl chlorides, bromides, and iodides. The resulting aryl-substituted cationic carbodicarbene derivatives are prone to one-electron oxidation yielding radical-dications, which, depending on the aryl motif employed, follow different modes of radical-radical dimerization and constitute an entry point to carbon/nitrogen- and nitrogen/nitrogen-centered diradicaloids. Subsequently, this coupling strategy was strategically applied to the synthesis of p-phenylene- and p,p'-biphenylene-bridged carbon/carbon-centered electron-deficient diradicaloids. The employed π-conjugated spacer plays a crucial role in determining the triplet population at room temperature by modulation of the singlet-triplet gap: EPR inactive for p-phenylene vs EPR active for p,p'-biphenylene. Nearly two decades after the disclosure of carbodicarbenes as donor-stabilized atomic carbon equivalents by Tonner and Frenking in 2007, we demonstrate their cross-couplings with a series of aryl halides/dihalides and, based on this, developed a modular methodology for the systematic synthesis of various electron-deficient diradicaloids.
Collapse
Affiliation(s)
- Vasu Malhotra
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany
| | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | | | - Tejaswinee Gangber
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | | | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
2
|
Chen D, Xu Y, Wang Y, Li X, Yin D, Yan L. Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39441126 DOI: 10.1021/acsami.4c13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stable organic radicals, with unique electronic transitions from the ground state (D0) to the doublet excited state (D1), show promise as high-fluorescence quantum yield dyes. While organic small-molecule photosensitizers (PSs) have advanced for tumor photodynamic therapy (PDT), opportunities exist to enhance their performance and functionality. Herein, we synthesized Thiele's fluorocarbon derivative diradicaloid TFC-I with nearly 100% PLQY and integrated it into amphiphilic polypeptide nanoparticles, P-TI, using a precursor-doping approach. P-TI demonstrated notable features including high photostability, aggregation-induced emission, bright near-infrared fluorescence, substantial quantum yield (37% PLQY), robust near-infrared two-photon absorption (∼400 GM cross section), and superior ROS generation compared to commercial PSs. In vitro and in vivo experiments confirmed that P-TI performed well in mitochondria-targeted PDT, two-photon fluorescence imaging, and biosafety. This work highlights the use of organic stable radicals with precursor-doping for efficient PDT and deep tumor tissue imaging.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| |
Collapse
|
3
|
Li C, Zhou W, Liu Z, Gao R, Mi Q, Ning Z, Ren Y. Non-innocent P-centers in nonbenzenoid polycyclic aromatic molecules with tunable structures and properties. Chem Sci 2024:d4sc05857g. [PMID: 39449686 PMCID: PMC11495496 DOI: 10.1039/d4sc05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Implanting heteroatoms into polycyclic aromatic molecules (PAMs) offers a great opportunity to fine-tune their optoelectronic properties. Herein, we report a new type of nonbenzenoid PAM in which the sp2 C atoms are replaced by S and P in the azulene moiety. The synthesis harnessed modular P-chemistry and cyclization chemistry, which afforded the first example of P-azulene-based PAMs with isomeric PN- and PC-type structures. Photophysical and theoretical studies revealed that the P-environments have strong impacts on the structures and properties of the P-PAMs. Different from the electronic structure of azulene with strong π conjugation, the PC derivatives maintained effective σ*-π* hyperconjugation in the frontier molecular orbitals via the P-centers. In particular, the PC derivative with a P(iii)-center showed unexpected room-temperature phosphorescence in solution, which was attributed to the excited-state aromaticity induced structure change at the P-center. Decoration with various aryl groups further modified the photophysical and redox properties in another dimension. Furthermore, bis(triarylamine)-functionalized P-PAMs formed stable radical cations in which the P-environments strongly influenced the mixed-valence state and open-shell characters. As a proof of concept, bis(triarylamine)-functionalized P-PAMs were explored as the hole-transporting layers in perovskite solar cells, and a power conversion efficiency of 14% was achieved. As a new example of nonbenzenoid PAMs with intriguing optoelectronic properties, our P-PAMs are promising building blocks for diverse optoelectronic applications in the future.
Collapse
Affiliation(s)
- Can Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Shanghai Clinical Research and Trial Center Shanghai 201210 People's Republic of China
| |
Collapse
|
4
|
Euringer L, Holzapfel M, Krummenacher I, Franz M, Richert S, Braunschweig H, Lambert C. Tuning Electron Transfer Coupling and Exchange Interaction in Bis-triarylamine Radical Cations and Dications by Bridge Electron Density. J Am Chem Soc 2024; 146:27679-27689. [PMID: 39316417 DOI: 10.1021/jacs.4c09221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The influence of the electron density of a bridge connecting two redox centers on both the intervalence hole transfer and the magnetic superexchange was investigated in a series of bridged bis-triarylamine mono- and dications. In this series, the bridge was 2,7-fluorenyl, where the bridge electron density was modified by substituents at the 9-position. For the mixed-valence monocations, the observation of both an intervalence charge transfer (IVCT) band and an absorption band associated with an electron transfer from the bridging fluorene to the triarylamine radical cation centers allowed determination of the electron transfer couplings in the framework of the three-state generalized Mulliken-Hush theory. Comparison of the derived couplings with those obtained from a classical two-state approach demonstrates an enhancement of the electronic coupling which increases with decreasing bridge state energy. For the dicationic diradical counterparts, the singlet-triplet gap (exchange interaction) was determined both experimentally and by quantum chemical methods. Hereby, an increase of antiferromagnetic coupling with a lowering of the bridge state energy by electron donating substituents was observed. Analysis of the involved molecular orbitals suggests that the ferromagnetic coupling is inversely proportional to the square of the bridge energy, which is also supported by the experimental findings. This influence of the bridge state energy on both types of interactions, electron transfer and magnetic exchange, provides a design guideline for fine-tuning the properties of electronically coupled organic redox dyads by variation of the bridge electron density.
Collapse
Affiliation(s)
- Leon Euringer
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Franz
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center für Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Zhao Y, Zhang Y, Wang T, Pei R, Zhao Y, Xue XS, Wang X. A Thermally Populated Germylene-Based Donor-Acceptor Diradical. Angew Chem Int Ed Engl 2024:e202411180. [PMID: 39192703 DOI: 10.1002/anie.202411180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
This work reports synthesis of a germylene based donor-acceptor molecule and its thermal excitation to a triplet state by coordination with a Lewis acid. Products have been characterized by single crystal X-ray diffraction, EPR spectroscopy, and SQUID measurement, in conjunction with DFT calculation. The singlet-triplet energy gap of the donor-acceptor molecule is dramatically reduced from -18.8 to -7.2 kcal/mol by the coordination with B(C6F5)3 (BCF), which enables an intramolecular single electron transfer from one germylene moiety to another upon heating, forming an intramolecular radical ion pair with diradical character. The work provides an approach to the formation of thermally populated open-shell species of heavier main group elements.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. Non-Kekulé meta-Quinodimethane Singlet Diradicals Based on Classical N-Heterocyclic Carbenes. Chemistry 2024:e202403029. [PMID: 39140842 DOI: 10.1002/chem.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Diradicals based on a meta-quinodimethane (m-QDM) scaffold generally have a triplet ground state and are rather scarce. Herein, m-QDM-based non-Kekulé diradicals [3,3'-(NHC)2BP] (3-NHC) (NHC = SIPr = C{N(Dipp)CH2}2; IPr = C{N(Dipp)CH}2, Me-IPr = C{N(Dipp)CMe}2; Dipp = 2,6-iPr2C6H3; BP = 1,1'-C6H4C6H4) featuring N-heterocyclic carbene (NHC) pendants are reported as crystalline solids. The EPR spectra of 3-NHC show both allowed (Δms = 1) and forbidden (Δms = 2; 'half-field') transitions characteristic for triplet diradicals. Variable temperature EPR studies however reveal a singlet ground state for 3-SIPr. Consistent with the EPR spectra, calculations predict a remarkably small singlet-triplet energy gap (ΔEST ≤ 0.26 kcal/mol) for the 3-NHC compounds. The calculated singlet diradical character for the ground states of the 3-NHC compounds amounts to ~99 %.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
8
|
Li F, Huang J, Meng Y, Li J, Zhang L, Sheng D. In situ confinement of ultra-small metal nanoparticles in redox-active zirconium MOFs for catalysis. Chem Commun (Camb) 2024. [PMID: 39054916 DOI: 10.1039/d4cc01976h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we successfully fabricated ultra-small metal nanoparticles into two stable Zr-based metal-organic frameworks via in situ redox reactions between triphenylamine and the corresponding metal ions to afford Pd NPs@1 and Pd NPs@2, which exhibit excellent activity and reusability for Suzuki coupling reactions as heterogeneous catalysts.
Collapse
Affiliation(s)
- Fugang Li
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Jinyi Huang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Yuxuan Meng
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Ji Li
- Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Liangliang Zhang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
10
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. N-Heterocyclic Carbene Analogues of Wittig Hydrocarbon. Chemistry 2024; 30:e202400879. [PMID: 38437163 DOI: 10.1002/chem.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
N-Heterocyclic carbene (NHC) analogues of Wittig hydrocarbon, [(NHC)(Stil)(NHC)] (3a-c) (NHC = SIPr (1a) = C[N(Dipp)CH2]2, Dipp = 2,6-iPr2C6H3; IPr (1b) = C[N(Dipp)CH]2; Me-IPr (1c) = C[N(Dipp)CMe]2 and Stil = C6H4CHCHC6H4) have been reported as crystalline solids. 3a-c are prepared by two-electron reductions of the corresponding bis-1,3-imidazoli(ni)um bromides [(NHC)(Stil)NHC)](Br)2 (2a-c) with KC8 in >94 % yields. 2a-c are accessible by the nickel catalyzed direct C-C coupling of NHCs (1a-c) with (E)-4,4'-dibromostilbene. One-electron oxidation of 3a,b yields the corresponding radical cations [(NHC)(Stil)NHC)]B(C6F5)4 4a,b. All compounds have been characterized by UV-Vis/NMR/EPR spectroscopy as well as 2a, 3a, and 3b by single crystal X-ray diffraction. The electronic structures of representative systems have been analyzed by quantum chemical calculations.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
11
|
Zhou Z, Yang K, He L, Wang W, Lai W, Yang Y, Dong Y, Xie S, Yuan L, Zeng Z. Sulfone-Functionalized Chichibabin's Hydrocarbons: Stable Diradicaloids with Symmetry Breaking Charge Transfer Contributing to NIR Emission beyond 900 nm. J Am Chem Soc 2024; 146:6763-6772. [PMID: 38416700 DOI: 10.1021/jacs.3c13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
While monoradical emitters have emerged as a new route toward efficient organic light-emitting diodes, the luminescence property of organic diradicaloids is still scarcely explored. Herein, by devising a novel radical-radical coupling-based synthetic approach, we report a new class of sulfone-functionalized Chichibabin's hydrocarbon derivatives, SD-1-3, featuring varied substituent patterns and moderate to high diradical characters of 0.44-0.70, as highly stable diradicaloids with rarely seen NIR emission beyond 900 nm. Via comprehensive experimental and theoretical investigations, we reveal that the optoelectronic and magnetic properties of these materials are significantly tuned by the variations of substitutions (H/CF3/OMe) on the molecular skeletons. More importantly, quantum chemical computations indicate that the embedding of sulfone groups has contributed to a breaking of their quasi-C2 symmetry of these diradicaloid molecules and results in an excited-state charge transfer character. Therefore, a remarkably deep NIR emissive wavelength of up to 998 nm, together with a large Stokes shift (∼386 nm), is achieved for the CF3-based SD-2 molecule in tetrahydrofuran. To the best of our knowledge, such a luminescent wavelength of SD-2 has represented the longest wavelengths among the currently reported organic fluorescent radicals. Overall, our work not only establishes a new synthetic approach toward stable Chichibabin's hydrocarbons but also paves the way for designing NIR emissive open-shell materials with both fundamental understanding and feasible control of their luminescent properties.
Collapse
Affiliation(s)
- Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Yinhua Yang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yueguo Dong
- Tianjin Jiuri New Material Co., Ltd., Tianjin 300384, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| |
Collapse
|
12
|
Jin XY, Wang JY, Yang X, Chen ZN. Attaining Exceptional Stable Copper(I) Metallacyclopentadiene Diradicaloids through Ligand Engineering. Inorg Chem 2023; 62:19323-19331. [PMID: 37955402 DOI: 10.1021/acs.inorgchem.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Diradicaloids are generally high-energy molecules with open-shell configuration and are quite reactive. In this work, we report a feasible synthetic approach to attaining exceptionally stable copper(I) metallacyclopentadiene diradicaloids through ligand engineering. Copper(I)-hybrid cyclopentadiene diradicaloids 1c-6c that absorb intensely in visible regions were successfully prepared in stoichiometrical yields under UV light irradiation. The diradicaloids originate from the C-C bonding coupling of two side-by-side-arranged ethynyl groups in complexes 1-6 upon photocyclization. By rational selection of substituents in triphosphine ligands, we systematically modulate the kinetic behavior of diradicaloids 1c-6c in the thermal decoloration process. With precise ligand design, we are able to obtain exceptionally stable copper(I)-hybrid cyclopentadiene diradicaloids with a half-life as long as ca. 40 h in CH2Cl2 solution at ambient temperature. As demonstrated by electron paramagnetic resonance (EPR) and variable-temperature magnetic studies, the diradicaloids manifest a singlet ground state, but they are readily populated to a triplet excited state through thermal activation in view of a small singlet-triplet energy gap of -0.39 kcal mol-1. The diradicaloids show two-step quasi-reversible reduction waves at about -0.5 and -1.0 V ascribed to successive one-electron-accepting processes, coinciding perfectly with the characteristics of diradicals.
Collapse
Affiliation(s)
- Xu-Yuan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xin Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
13
|
Li X, Liu Z, Li C, Gao R, Qi Y, Ren Y. Synthesis and Photophysical Properties of Carbazole-Functionalized Diazaphosphepines via Sequent P-N Chemistry. J Org Chem 2023; 88:13678-13685. [PMID: 37691267 DOI: 10.1021/acs.joc.3c01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.
Collapse
Affiliation(s)
- Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Can Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanpeng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscop, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Punzi A, Dai Y, Dibenedetto CN, Mesto E, Schingaro E, Ullrich T, Striccoli M, Guldi DM, Negri F, Farinola GM, Blasi D. Dark State of the Thiele Hydrocarbon: Efficient Solvatochromic Emission from a Nonpolar Centrosymmetric Singlet Diradicaloid. J Am Chem Soc 2023; 145:20229-20241. [PMID: 37671971 DOI: 10.1021/jacs.3c05251] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this work, a comprehensive investigation of the photoinduced processes and mechanisms linked to the luminescence of a novel nonperchlorinated Thiele hydrocarbon (TTH) is presented. Despite the comparable diradical character of TTH (y0 = 0.32-0.44) and the unsubstituted Thiele hydrocarbon (TH) (y0 = 0.30), the polyhalogenated species is inert and photostable, showing an intense deep-red/near-infrared (NIR) fluorescence (photoluminescence quantum yield (PLQY) = 0.84 in toluene) even at room temperature and in the solid state (PLQY = 0.19). TTH displays a large Stokes shift (307 nm in benzonitrile) and solvatochromic behavior, which is unusual for a centrosymmetric, nonpolar, and low-conjugated species. These outstanding emission features are interpreted through quantum-chemical calculations, indicating that its fluorescence arises from the low-lying dark doubly excited zwitterionic state, typically found at low excitation energies in diradicaloids, acquiring dipole moment and intensity by state mixing via twisting around the strongly elongated exocyclic CC bonds of the excited p-quinodimethane (pQDM) core, with a mechanism similar to sudden polarization occurring in olefins. Such a mechanism is derived from ns and fs transient absorption measurements.
Collapse
Affiliation(s)
- Angela Punzi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna and INSTM UdR Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Carlo N Dibenedetto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- CNR-Istituto per i Processi Chimico Fisici (CNR-IPCF), SS Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Tobias Ullrich
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marinella Striccoli
- CNR-Istituto per i Processi Chimico Fisici (CNR-IPCF), SS Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna and INSTM UdR Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Gianluca M Farinola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Davide Blasi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
15
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
16
|
Han H, Huang Y, Tang C, Liu Y, Krzyaniak MD, Song B, Li X, Wu G, Wu Y, Zhang R, Jiao Y, Zhao X, Chen XY, Wu H, Stern CL, Ma Y, Qiu Y, Wasielewski MR, Stoddart JF. Spin-Frustrated Trisradical Trication of PrismCage. J Am Chem Soc 2023; 145:18402-18413. [PMID: 37578165 DOI: 10.1021/jacs.3c04340] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.
Collapse
Affiliation(s)
- Han Han
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuheng Huang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for the Soft Matter Science and Engineering, The Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruihua Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for the Soft Matter Science and Engineering, The Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yunyan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Anglada JM, Poater J, Moreira IDR, Bofill JM. Controlling the Diradical Character of Thiele Like Compounds. J Org Chem 2023; 88:8553-8562. [PMID: 37339010 PMCID: PMC10336959 DOI: 10.1021/acs.joc.3c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/22/2023]
Abstract
Organic diradicals play an important role in many fields of chemistry, biochemistry, and materials science. In this work, by means of high-level theoretical calculations, we have investigated the effect of representative chemical substituents in p-quinodimethane (pQDM) and Thiele's hydrocarbons with respect to the singlet-triplet energy gap, a feature characterizing their diradical character. We show how the nature of the substituents has a very important effect in controlling the singlet-triplet energy gap so that several compounds show diradical features in their ground electronic state. Importantly, steric effects appear to play the most determinant role for pQDM analogues, with minor effects of the substituents in the central ring. For Thiele like compounds, we found that electron-withdrawing groups in the central ring favor the quinoidal form with a low or almost null diradical character, whereas electron-donating group substituents favor the aromatic-diradical form if the electron donation does not exceed 6-π electrons. In this case, if there is an excess of electron donation, the diradical character is reduced. The electronic spectrum of these compounds is also calculated, and we predict that the most intense bands occur in the visible region, although in some cases characteristic electronic transition in the near-IR region may appear.
Collapse
Affiliation(s)
- Josep M. Anglada
- Departament
de Química Biològica (IQAC-CSIC), Carrer Jordi Girona, 18, 08034 Barcelona, Spain
| | - Jordi Poater
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ibério de
P. R. Moreira
- Departament
de Ciència de Materials i Química Física, Secció
de Química Física, Universitat
de Barcelona, 08028 Barcelona, Spain
- IQTCUB, Universitat de Barcelona, Martí i Franquès,
1-11, 08028 Barcelona, Spain
| | - Josep Maria Bofill
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Jana S, Elvers BJ, Pätsch S, Sarkar P, Krummenacher I, Nayak MK, Maiti A, Chrysochos N, Pati SK, Schulzke C, Braunschweig H, Yildiz CB, Jana A. Air and Moisture Stable para- and ortho-Quinodimethane Derivatives Derived from bis- N-Heterocyclic Olefins. Org Lett 2023; 25:1799-1804. [PMID: 36662600 DOI: 10.1021/acs.orglett.2c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein we report the development of a new methodology for the synthesis of various quinodimethane derivatives under two-electron oxidation of bis-N-heterocyclic olefins linked by different π-conjugated aromatic spacers. In case of para- and ortho-phenylene bridge, we obtained air and moisture stable diimidazolium para- and ortho-quinodimethane derivatives. Analogues of the para-phenylene spacer such as tetrafluoro-p-phenylene and p-anthracene also led to the corresponding air and moisture stable quinodimethane derivatives. This emphasizes the influence of imidazolium substituents which facilitate the air and moisture stability of the quinodimethane derivatives. Differences were observed for the electron transfer processes: two one-electron vs one two-electron redox transitions between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes depending on the employed π-conjugated aromatic spacer. The formation of the π-conjugated radical-cations, transient redox intermediates between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes, was addressed by an EPR investigation.
Collapse
Affiliation(s)
- Subhadip Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany
| | - Sebastian Pätsch
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Cem B Yildiz
- Department of Aromatic and Medicinal Plants, University of Aksaray, Aksaray 68100, Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
19
|
Dai Y, Xie Z, Bao M, Liu C, Su Y. Multiple stable redox states and tunable ground states via the marriage of viologens and Chichibabin's hydrocarbon †. Chem Sci 2023; 14:3548-3553. [PMID: 37006684 PMCID: PMC10056129 DOI: 10.1039/d3sc00102d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Chichibabin's hydrocarbon and viologens are among the most famous diradicaloids and organic redox systems, respectively. However, each has its own disadvantages: the instability of the former and its charged species, and the closed-shell nature of the neutral species derived from the latter, respectively. Herein, we report that terminal borylation and central distortion of 4,4′-bipyridine allow us to readily isolate the first bis-BN-based analogues (1 and 2) of Chichibabin's hydrocarbon with three stable redox states and tunable ground states. Electrochemically, both compounds exhibit two reversible oxidation processes with wide redox ranges. One- and two-electron chemical oxidations of 1 afford the crystalline radical cation 1˙+ and dication 12+, respectively. Moreover, the ground states of 1 and 2 are tunable with 1 as a closed-shell singlet and the tetramethyl-substituted 2 as an open-shell singlet, the latter of which could be thermally excited to its triplet state because of the small singlet-triplet gap. Herein, we report the isolation of bis-BN-based species 1 and 2 with multiple stable redox states. Their ground states are tunable with 1 as a closed-shell singlet and 2 as an open-shell singlet with a small singlet-triplet gap.![]()
Collapse
Affiliation(s)
- Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
- State Key Laboratory of Coordination Chemistry, Nanjing UniversityNanjing 210023China
| |
Collapse
|
20
|
Dong Z, Sienkiewicz A, Suleymanov AA, Berton C, Fadaei‐Tirani F, Scopelliti R, Severin K. A Mesoionic Diselenolene Anion and the Corresponding Radical Dianion. Chemistry 2022; 28:e202200893. [PMID: 35388932 PMCID: PMC9322424 DOI: 10.1002/chem.202200893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Dichalcogenolenes are archetypal redox non-innocent ligands with numerous applications. Herein, a diselenolene ligand with fundamentally different electronic properties is described. A mesoionic diselenolene was prepared by selenation of a C2-protected imidazolium salt. This ligand is diamagnetic, which is in contrast to the paramagnetic nature of standard dichalcogenolene monoanions. The new ligand is also redox-active, as demonstrated by isolation of a stable diselenolene radical dianion. The unique electronic properties of the new ligand give rise to unusual coordination chemistry. Thus, preparation of a hexacoordinate aluminum tris(diselenolene) complex and a Lewis acidic aluminate complex with two ligand-centered unpaired electrons was achieved.
Collapse
Affiliation(s)
- Zhaowen Dong
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Andrzej Sienkiewicz
- Institute of PhysicsÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- ADSresonances SàrlRoute de Genève 60B1028PréverengesSwitzerland
| | - Abdusalom A. Suleymanov
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Cesare Berton
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Kay Severin
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
21
|
Wang J, Cui H, Ruan H, Zhao Y, Zhao Y, Zhang L, Wang X. The Lewis Acid Induced Formation of a Stable Diradical with an Intramolecular Ion Pairing State. J Am Chem Soc 2022; 144:7978-7982. [PMID: 35485969 DOI: 10.1021/jacs.2c02902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stable cross-conjugated diradical was prepared by the reaction of a donor-acceptor-donor (D-A-D) molecule with B(C6F5)3. Its geometry and electronic structure were characterized by single crystal X-ray diffraction, EPR spectroscopy, SQUID measurement, UV/vis spectroscopy, and DFT calculation. It has an open-shell singlet ground state with a thermally excited triplet state. It can be viewed as an intramolecular radical ion pair, and the formation mechanism is proposed as an intramolecular single electron transfer that occurs from the bis(triarylamine) donor fragment to the central dioxophenyl acceptor moiety, induced by the acidic boron atom. This work provides a Lewis acid induced approach to the formation of neutral and cross-conjugated diradicals.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Li Zhang
- School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Xie Z, Dai Y, Bao M, Feng Z, Wang W, Liu C, Wang X, Su Y. Crystalline radical cations of bis-BN-based analogues of Thiele's hydrocarbon. Chem Commun (Camb) 2022; 58:5391-5394. [PMID: 35412540 DOI: 10.1039/d2cc01254e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two radical cations of bis-BN-based analogues of Thiele's hydrocarbons were facilely synthesized, fully characterized, and theoretically investigated. One-electron oxidation leads to the reduced bond length alternation and NICS values of the central C4N2 rings, suggesting the decreasing antiaromatic character. The spin density of the radical cations is significantly delocalized over the central linkers with a small contribution from two terminal N-heterocyclic boryl units.
Collapse
Affiliation(s)
- Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China. .,State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Hou L, Jing X, Huang H, Duan C. Merging Charge Transfer into Metal-Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15307-15316. [PMID: 35344330 DOI: 10.1021/acsami.2c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Utilization of multiphotons to achieve high reduction potentials is a highly demanding but still challenging task for reductive cleavage of inert bonds. Herein, we report a new charge transfer approach that simultaneously excites the electron-rich dye and the radical anionic of the electron-deficient one for photocatalytic activation of aryl chlorides with high reduction potentials (Ered ≈ -1.9 to -2.9 V). Interactions between the tetraphenylbenzene-1,4,-diamine dyes in the large pores of metal-organic frameworks and the adsorbed 9,10-dicyanoanthracene partly endows charge transfer in the ground state. The first photoexcitation led to the formation charge separation pairs containing both radical cation and anion for second photon excitation. The possibility of modifying each absorption band of the two dyes independently innovated the resultant aryl radicals applied in various useful transformations, expanding multiphoton manifolds on both the dye scopes and reaction versions. A comparison of the catalytic performance between different structural patterns of metal-organic frameworks with the same ligand demonstrated that the incorporating of the organic dyes within the pores of the frameworks was essential to form charge-transfer species and accelerate the interesting chemical conversion.
Collapse
Affiliation(s)
- Leixin Hou
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
24
|
Zhou M, Mao L, Niu YF, Zhao XL, Shi X, Yang HB. Triphenylamines consisting of bulky 3,5-di‑tert‑butyl‑4-anisyl group: Synthesis, redox properties and their radical cation species. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Roy M, Walton JH, Fettinger JC, Balch AL. Direct Crystallization of Diamine Radical Cations: Carbon‐Nitrogen Bond Formation from the Reaction of Triphenylamine with TiCl
4
, TiBr
4
, or SnCl
4
versus Carbon‐Carbon Bond Formation with SbCl
5
**. Chemistry 2022; 28:e202104631. [DOI: 10.1002/chem.202104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Mrittika Roy
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - Jeffrey H. Walton
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - Alan L. Balch
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
26
|
Sun Q, Liu M, Ruan H, Chen C, Zhao Y, Tan G, Wang X. The cis/ trans conformation approach for tuning the magnetic coupling in a diradical: isolation of pure pyridine-based diradical dianions. Chem Commun (Camb) 2022; 58:1708-1711. [PMID: 35023510 DOI: 10.1039/d1cc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron reductions of 3,3'-bis(2,6-dimesitylpyridin-4-yl)-1,1'-biphenyl 1 with elemental potassium in the absence and presence of 18-c-6 afforded the diradical dianion salts [K+]2˙[trans-1]˙˙2- and [K(18-c-6)]+2˙[cis-1]˙˙2-, which exhibit trans and cis configurations, respectively. The transoid conformer could be converted to the cisoid one through reacting with 18-c-6.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
Khurana R, Bajaj A, Ali ME. Tuning the magnetic properties of a diamagnetic di-Blatter's zwitterion to antiferro- and ferromagnetically coupled diradicals. Phys Chem Chem Phys 2022; 24:2543-2553. [PMID: 35024707 DOI: 10.1039/d1cp04807d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest of obtaining organic molecular magnets based on stable diradicals, we have tuned the inherent zwitterionic ground state of tetraphenylhexaazaanthracene (TPHA), a molecule containing two Blatter's moieties, by adopting two different strategies. In the first strategy, we have increased the length of the coupler between the two radical moieties and observed a transition from the zwitterionic ground state to the diradicalized state. With a larger coupler, ferromagnetic interactions are realized based on density functional theory (DFT) and wave-function theory (WFT) based complete active space self-consistent field (CASSCF)-N-electron valence state perturbation theory (NEVPT2) methods. An analysis based on the extent of spin contamination, diradical character, CASSCF orbital occupation number, Head-Gordon's index, HOMO-LUMO and SOMOs energy gaps is demonstrated that marks the transition of the ground state in these systems. In another approach, we systematically explore the effect of push-pull substitution on the way to obtain molecules based on a TPHA skeleton with diradicaloid state and, in some cases, even a triplet ground state.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
28
|
Li K, Feng Z, Ruan H, Sun Q, Zhao Y, Wang X. The catenation of a singlet diradical dication and modulation of diradical character by metal coordination. Chem Commun (Camb) 2022; 58:6457-6460. [DOI: 10.1039/d2cc01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A singlet bis(triarylamine) diradical dication and its zigzag 1D magnetic chain catenated by silver cations were isolated and characterized by single-crystal X-ray crystallography, EPR spectroscopy, SQUID measurements, cyclic voltammetry and...
Collapse
|
29
|
Qu L, Chen H, Shi C, Li H, Ai Q, Liu X, Yang C, Yang H, Hu X. The synthesis and magnetic properties of carboxylic acid-derived 1,2,4-benzotriazinyl radicals and their coordination particles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03772f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stable magnetic coordination particles based on π-conjugated 1,2,4-benzotriazinyl radical ligands were synthesized using a sonochemical method.
Collapse
Affiliation(s)
- Le Qu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hanjiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Chengjia Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaqing Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qi Ai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Guangdong, 523808, P. R. China
| |
Collapse
|
30
|
Neigenfind P, Knyszek D, Handelmann J, Gessner VH. Synthesis of Sterically Encumbered Di- and Triarylamines by Palladium-Catalysed C-N Coupling Reactions at Mild Reaction Conditions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02352g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of bulky, ortho-substituted triarylamines often represents a synthetic challenge, but is highly desirable due to the use of these compounds in organic electronics. Here, we report on a...
Collapse
|
31
|
Wang W, Zheng X, Zhang L, Li S, Zhao Y, Wang X. Cyclic (Amino)(Aryl)Nitrenium Cations with Lewis Acidity Controlled by Remote Substituents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
- College of Science Henan Agricultural University Zhengzhou Henan 450002 China
| | - Leran Zhang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
| | - Shunjie Li
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
32
|
Cui H, Wang L, Ruan H, Liu M, Feng Z, Wang J, Zhao Y, Wang X. Controlling the unpaired electron by electrostatic attraction in the solid state. Chem Commun (Camb) 2021; 57:13345-13348. [PMID: 34817477 DOI: 10.1039/d1cc05244f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-electron reduction of 2,7-tBu2-pyrene-4,5,9,10-tetraone (1) with potassium afforded two monoradicals 1K(cryp) and 1K(18c6), a radical tetramer [1K(15c5)]4 and a radical polymer (1K)2n. Using 1K(cryp) and 1K(18c6), we demonstrated large spin density modulation of an organic radical anion in the solid state by electrostatic attraction, without alternation of the molecular skeletons.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China. .,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liting Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Jie Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
33
|
Maiti A, Sobottka S, Chandra S, Jana D, Ravat P, Sarkar B, Jana A. Diamidocarbene-Based Thiele and Tschitschibabin Hydrocarbons: Carbonyl Functionalized Kekulé Diradicaloids. J Org Chem 2021; 86:16464-16472. [PMID: 34780693 DOI: 10.1021/acs.joc.1c01827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report diamidocarbene (DAC)-based Thiele and Tschitschibabin hydrocarbons, diradicaloids that contain four carbonyl/amido functional groups. The impact of two different π-conjugated spacers, p-phenylene vs p,p'-biphenylene, has been realized. The quantum chemical calculations suggest diamidocarbene (DAC)-based Thiele hydrocarbon (p-phenylene bridged) closed-shell singlet is the ground state, whereas for the diamidocarbene (DAC)-based Tschitschibabin hydrocarbon (p,p'-biphenylene bridged), open-shell singlet is the ground state. The influence of two different π-conjugated spacers also has been reflected in their UV-vis spectra. To gain more information on the diamidocarbene (DAC)-based Thiele and Tschitschibabin hydrocarbons, we have also carried out cyclic voltammetry investigations along with UV-vis-NIR-spectroelectrochemical studies of their corresponding 2-e oxidized product.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Shubhadeep Chandra
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany.,Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Debayan Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany.,Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| |
Collapse
|
34
|
Ou YP, Zhang Q, Yang X, Cao N, Jiang P, Hua Liu S. Isomeric triarylamine-ferrocene mixed-valence systems: Syntheses, structural-(spectro)electrochemical analysis, and theoretical calculations. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Kurosawa T, Okamoto T, Yamashita Y, Kumagai S, Watanabe S, Takeya J. Strong and Atmospherically Stable Dicationic Oxidative Dopant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101998. [PMID: 34713616 PMCID: PMC8693046 DOI: 10.1002/advs.202101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Increasing the doping level of semiconducting polymer using strong dopants is essential for achieving good electrical conductivity. As for p-dopant, raising the electron affinity of a neutral compound through the dense introduction of electron-withdrawing group has always been the predominant strategy to achieve strong dopant. However, this simple and intuitive strategy faces extendibility, accessibility, and stability issues for further development. Herein, the use of dicationic state of tetraaryl benzidine (TAB2+ ) in conjunction with bis(trifluoromethylsulfonyl)imide anion (TFSI- ) as a strong and atmospherically stable p-dopant (TAB-2TFSI), for which the concept is hinted from a rapid and spontaneous dimerization of radical cation dopant, is demonstrated. TAB-2TFSI possesses a large redox potential such that it would have deteriorated when in contact with H2 O. However, no trace of degradation after 1 year of storage under atmospheric conditions is observed. When doping the state-of-the-art semiconducting polymer with TAB-2TFSI, a high doping level together with significantly enhanced crystallinity is achieved which led to an electrical conductivity as high as 656 S cm-1 . The concept of utilizing charged molecule as a dopant is highly versatile and will potentially accelerate the development of a strong yet stable dopant.
Collapse
Affiliation(s)
- Tadanori Kurosawa
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yu Yamashita
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 205-0044, Japan
| | - Shohei Kumagai
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 205-0044, Japan
| |
Collapse
|
36
|
Mao L, Zhou M, Shi X, Yang HB. Triphenylamine (TPA) radical cations and related macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Kimura T, Nakahodo T, Suzuki E, Nakanishi Y, Misaki Y, Ogawa S. Preparation, Structure Determination, and Electrochemical Properties of 4,5‐Dialkylbenzo[1,2‐
d
:4,5‐
d’
]bis[1,2,3]triselenoles and Their Singlet and Triplet‐State Dications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Kimura
- Center for Instrumental Analysis Iwate University Morioka 020-8551 Japan
| | - Tsukasa Nakahodo
- Department of Applied Chemistry Kindai University Higashi Osaka 577-8502 Japan
| | - Eiichi Suzuki
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Morioka 020-8551 Japan
| | - Yoshiki Nakanishi
- Department of Physical Science and Materials Engineering Faculty of Science and Engineering Iwate University Morioka 020-8551 Japan
| | - Yohji Misaki
- Department of Applied Chemistry Faculty of Engineering Ehime University Matsuyama 790-8577 Japan
| | - Satoshi Ogawa
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Morioka 020-8551 Japan
| |
Collapse
|
38
|
Iwanaga T, Komori T, Sato H, Suzuki S, Yamauchi T, Misaki Y, Sato H, Toyota S. Synthesis, Structures, and Electronic Properties of 2,7-Anthrylene-Based Azacyclophanes Bearing o-, m-, and p-Phenylenediamine Linkers. J Org Chem 2021; 86:11370-11377. [PMID: 34324328 DOI: 10.1021/acs.joc.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of novel azacyclophanes consisting of 2,7-anthrylene and phenylene units were designed and synthesized by the Buchwald-Hartwig coupling reaction to investigate their unique electronic properties in multiple oxidized states. Cyclic voltammetry showed that the p-phenylene derivative exhibited three reversible oxidation waves, whereas the o- and m-phenylene derivatives showed two quasi-reversible oxidation waves due to the complicated intramolecular interaction between the oxidized units and neutral units. Moreover, the absorption spectra of the p-phenylene derivative in different oxidation states showed absorption bands at 865 and 1025 nm, which were attributed to intramolecular charge-transfer interactions. The photophysical and electrochemical properties of the p-phenylene analog were also compared with those of the o- and m-phenylene derivatives based on theoretical calculations for further evaluation of the intramolecular electronic interactions.
Collapse
Affiliation(s)
- Tetsuo Iwanaga
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Takashi Komori
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Hiroki Sato
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomokazu Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yohji Misaki
- Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyasu Sato
- X-ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
39
|
Cui H, Hu ZB, Chen C, Ruan H, Fang Y, Zhang L, Zhao Y, Tan G, Song Y, Wang X. A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. Chem Sci 2021; 12:9998-10004. [PMID: 34377394 PMCID: PMC8317668 DOI: 10.1039/d1sc01932e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism. We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.![]()
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing 210095 China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
40
|
Liu Z, Zhang Z, Li T, Zhao W. Three-Dimensional Diradical Metallacage with an Open-Shell Ground State. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaoyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhonghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
41
|
Maiti A, Zhang F, Krummenacher I, Bhattacharyya M, Mehta S, Moos M, Lambert C, Engels B, Mondal A, Braunschweig H, Ravat P, Jana A. Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a p-Phenylene Bridge. J Am Chem Soc 2021; 143:3687-3692. [PMID: 33651600 DOI: 10.1021/jacs.0c12624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the synthesis and characterization of anionic boron- and carbon-based Kekulé diradicaloids spanned by a p-phenylene bridge. In contrast to Thiele's hydrocarbon, a closed-shell singlet system, they show an appreciable population of the triplet state at room temperature, as evidenced by both NMR and EPR spectroscopy. Moreover, en route to these anionic boron- and carbon-based hetero-diradicaloids, the formation of an isolable diamino(4-diarylboryl-phenyl)methyl radical was observed.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Fangyuan Zhang
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Moulika Bhattacharyya
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Michael Moos
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| |
Collapse
|
42
|
|
43
|
Fang Y, Sun Q, Chen X, Qiu Y, Chen C, Wang L, Zhao Y, Su Y, Li T, Zhang L, Wang X. Rational design and syntheses of aniline-based diradical dications: isolable congeners of quinodimethane diradicals. Org Chem Front 2021. [DOI: 10.1039/d0qo01265c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron oxidation of five aniline-based compounds 4,4′′-p/m-terphenyldiamines afforded the first isolable aniline-based diradical dications 12+–52+.
Collapse
|
44
|
Yin X, Liu J, Jäkle F. Electron‐Deficient Conjugated Materials via p–π* Conjugation with Boron: Extending Monomers to Oligomers, Macrocycles, and Polymers. Chemistry 2020; 27:2973-2986. [DOI: 10.1002/chem.202003481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaodong Yin
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
45
|
Wang Z, Akisaka R, Yabumoto S, Nakagawa T, Hatano S, Abe M. Impact of the macrocyclic structure and dynamic solvent effect on the reactivity of a localised singlet diradicaloid with π-single bonding character. Chem Sci 2020; 12:613-625. [PMID: 34163792 PMCID: PMC8179019 DOI: 10.1039/d0sc05311b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Localised singlet diradicals are key intermediates in bond homolysis processes. Generally, these highly reactive species undergo radical–radical coupling reaction immediately after their generation. Therefore, their short-lived character hampers experimental investigations of their nature. In this study, we implemented the new concept of “stretch effect” to access a kinetically stabilised singlet diradicaloid. To this end, a macrocyclic structure was computationally designed to enable the experimental examination of a singlet diradicaloid with π-single bonding character. The kinetically stabilised diradicaloid exhibited a low carbon–carbon coupling reaction rate of 6.4 × 103 s−1 (155.9 μs), approximately 11 and 1000 times slower than those of the first generation of macrocyclic system (7.0 × 104 s−1, 14.2 μs) and the parent system lacking the macrocycle (5 × 106 s−1, 200 ns) at 293 K in benzene, respectively. In addition, a significant dynamic solvent effect was observed for the first time in intramolecular radical–radical coupling reactions in viscous solvents such as glycerin triacetate. This theoretical and experimental study demonstrates that the stretch effect and solvent viscosity play important roles in retarding the σ-bond formation process, thus enabling a thorough examination of the nature of the singlet diradicaloid and paving the way toward a deeper understanding of reactive intermediates. An extremely long-lived localised singlet diradical with π-single bonding character is found in a macrocyclic structure that retards the radical–radical coupling reaction by the “stretch and solvent-dynamic effects”.![]()
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Rikuo Akisaka
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Sohshi Yabumoto
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan .,Hiroshima University Research Centre for Photo-Drug-Delivery-Systems (HiU-P-DDS), Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
46
|
Ou YP, Zhang J, Wang A, Yuan A, Yin C, Liu SH. Rutheniumethynyl-Triarylamine Organic-Inorganic Mixed-Valence Systems: Regulating Ru-N Electronic Coupling by Different Aryl Bridge Cores. Chem Asian J 2020; 15:3338-3349. [PMID: 32840035 DOI: 10.1002/asia.202000879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Four rutheniumethynyl-triarylamine complexes 1-4 with different aryl bridge cores were prepared. The solid structures of complexes 2-4 were fully confirmed by X-ray single-crystal diffraction analysis. Two consecutive one-electron oxidation processes of complexes 1-4 were attributed to the ruthenium and nitrogen centers, as revealed by cyclic voltammetry and square-wave voltammogram. Results also showed decreasing potential difference ΔE of complexes 1, 3, and 4, with the largest value for 2. Upon chemical oxidation of complexes 1-4 by 1.0 eq oxidation reagents FcPF6 or AgSbF6 , the mixed-valence complexes, except for 2+ , show characteristic broad NIR absorptions in the UV-vis-NIR spectroscopic experiments. NIR multiple absorptions were assigned to NAr2 →RuCp*(dppe) intervalence charge transfer (IVCT) and metal-to-ligand charge transfer transitions by TDDFT calculations. Coupling parameter (Hab ) from Hush theory revealed that increasing electronic communication in 1+ , 3+ , and 4+ . Electron density distribution of the HOMO for neutral molecules (1, 3, and 4) and spin density distribution of the corresponding single-oxidized states (1+ , 3+ , and 4+ ) increases progressively on the bridge as the size of the aromatic system increases, proving incremental contributions from bridge cores during oxidation.
Collapse
Affiliation(s)
- Ya-Ping Ou
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan, 421008, P.R. China
| | - Jing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Aihui Wang
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan, 421008, P.R. China
| | - Ande Yuan
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan, 421008, P.R. China
| | - Chuang Yin
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan, 421008, P.R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
47
|
Mahata A, Chandra S, Maiti A, Rao DK, Yildiz CB, Sarkar B, Jana A. α,α′-Diamino-p-quinodimethanes with Three Stable Oxidation States. Org Lett 2020; 22:8332-8336. [DOI: 10.1021/acs.orglett.0c02964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alok Mahata
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Fakultät Chemie, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal Plants, University of Aksaray, Aksaray-68100, Turkey
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Fakultät Chemie, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| |
Collapse
|
48
|
Maiti A, Chandra S, Sarkar B, Jana A. Acyclic diaminocarbene-based Thiele, Chichibabin, and Müller hydrocarbons. Chem Sci 2020; 11:11827-11833. [PMID: 34123209 PMCID: PMC8162802 DOI: 10.1039/d0sc03622f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thiele, Chichibabin and Müller hydrocarbons are considered as classical Kekulé diradicaloids. Herein we report the synthesis and characterization of acyclic diaminocarbene (ADC)-based Thiele, Chichibabin, and Müller hydrocarbons. The calculated singlet–triplet energy gaps are ΔES–T = −27.96, −3.70, −0.37 kcal mol−1, respectively, and gradually decrease with the increasing length of the π-conjugated spacer (p-phenylene vs. p,p′-biphenylene vs. p,p′′-terphenylene) between the two ADC-scaffolds. In agreement with the calculations, we also experimentally observed the enhancement of paramagnetic diradical character as a function of the length of the π-conjugated spacer. ADC-based Thiele's hydrocarbon is EPR silent and exhibits very well resolved NMR spectra, whereas ADC-based Müller's hydrocarbon displays EPR signals and featureless NMR spectra at room temperature. The spacer also has a strong influence on the UV-Vis-NIR spectra of these compounds. Considering that our methodology is modular, these results provide a convenient platform for the synthesis of an electronically modified new class of carbon-centered Kekulé diradicaloids. We report the synthesis of acyclic diaminocarbene (ADC)-scaffold based Thiele, Chichibabin, and Müller hydrocarbons. Studies support that the singlet-triplet energy gap depends on the π-conjugated spacer between the ADC scaffolds.![]()
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500046 Telangana India
| | - Shubhadeep Chandra
- Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500046 Telangana India
| |
Collapse
|
49
|
Ji X, Leng M, Xie H, Wang C, Dunbar KR, Zou Y, Fang L. Extraordinary electrochemical stability and extended polaron delocalization of ladder-type polyaniline-analogous polymers. Chem Sci 2020; 11:12737-12745. [PMID: 34094469 PMCID: PMC8163260 DOI: 10.1039/d0sc03348k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
Electrochemical stability and delocalization of states critically impact the functions and practical applications of electronically active polymers. Incorporation of a ladder-type constitution into these polymers represents a promising strategy to enhance the aforementioned properties from a fundamental structural perspective. A series of ladder-type polyaniline-analogous polymers are designed as models to test this hypothesis and are synthesized through a facile and scalable route. Chemical and electrochemical interconversions between the fully oxidized pernigraniline state and the fully reduced leucoemeraldine state are both achieved in a highly reversible and robust manner. The protonated pernigraniline form of the ladder polymer exhibits unprecedented electrochemical stability under highly acidic and oxidative conditions, enabling the access of a near-infrared light-absorbing material with extended polaron delocalization in the solid-state. An electrochromic device composed of this ladder polymer shows distinct switching between UV- and near-infrared-absorbing states with a remarkable cyclability, meanwhile tolerating a wide operating window of 4 volts. Taken together, these results demonstrate the principle of employing a ladder-type backbone constitution to impart superior electrochemical properties into electronically active polymers.
Collapse
Affiliation(s)
- Xiaozhou Ji
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Mingwan Leng
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Haomiao Xie
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Chenxu Wang
- Department of Materials Science and Engineering, Texas A&M University College Station TX 77843-3255 USA
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Lei Fang
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
- Department of Materials Science and Engineering, Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
50
|
Ji L, Shi J, Wei J, Yu T, Huang W. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908015. [PMID: 32583945 DOI: 10.1002/adma.201908015] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/28/2023]
Abstract
In the last few years, air-stable organic radicals and radical polymers have attracted tremendous attention due to their outstanding performance in flexible electronic devices, including transistors, batteries, light-emitting diodes, thermoelectric and photothermal conversion devices, and among many others. The main issue of radicals from laboratory studies to real-world applications is that the number of known air-stable radicals is very limited, and the radicals that have been used as materials are even less. Here, the known and newly developed air-stable organic radicals are summarized, generalizing the way of observing air-stable radicals. The special electric and photophysical properties of organic radicals and radical polymers are interpreted, which give radicals a wide scope for various of potential applications. Finally, the exciting applications of radicals that have been achieved in flexible electronic devices are summarized. The aim herein is to highlight the recent achievements in radicals in chemistry, materials science, and flexible electronics, and further bridge the gap between these three disciplines.
Collapse
Affiliation(s)
- Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Juan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|