1
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
2
|
Molla M, Saha A, Barman SK, Mandal S. Monomeric Fe(III)-Hydroxo and Fe(III)-Aqua Complexes Display Oxidative Asynchronous Hydrogen Atom Abstraction Reactivity. Chemistry 2024; 30:e202401163. [PMID: 38953593 DOI: 10.1002/chem.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
This paper presents the synthesis and characterization of a series of novel monomeric aqua-ligated iron(III) complexes, [FeIII(L5R)(OH2)]2+ (R=OMe, H, Cl, NO2), supported by an amide-containing pentadentate N5 donor ligand, L5R [HL5R=2-(((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-yl-methyl)amino)-N-(5-R-quinolin-8-yl)acetamide]. The complexes were characterized by various spectroscopic and analytical techniques, including electrochemistry and magnetic measurements. The Fe(III)-hydroxo complexes, [FeIII(L5R)(OH)]1+, were generated in situ by deprotonating the corresponding aqua complexes in a pH ~7 aqueous medium. In another way, adding one equivalent of a base to a methanolic solution of the Fe(III)-aqua complexes also produced the Fe(III)-hydroxo complexes. The study uses linoleic fatty acid as a substrate to explore the hydrogen atom abstraction (HAA) reactivity of both hydroxo and aqua complexes. The investigation highlights the substitution effect of the L5R ligand on reactivity, revealing a higher rate when an electron-withdrawing group is present. Hammett analyses and(or) determination of the asynchronicity factor (η) suggest an oxidative asynchronous concerted proton-electron transfer (CPET) pathway for the HAA reactions. Aqua complexes exhibited a higher asynchronicity in CPET, resulting in higher reaction rates than their hydroxo analogs. Overall, the work provides insights into the beneficial role of a higher imbalance in electron-transfer-proton-transfer (ET-PT) contributions in HAA reactivity.
Collapse
Affiliation(s)
- Mofijul Molla
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Suman K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Kayne M, Murphy PS, Kwon YM, Lee Y, Jackson TA, Wang D. Generation, Characterization and Reactivity of a High-Valent Mononuclear Cobalt(IV)-Diazide Complex. Chemistry 2024; 30:e202401218. [PMID: 38644346 DOI: 10.1002/chem.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
High-valent Fe(IV)=O intermediates of metalloenzymes have inspired numerous efforts to generate synthetic analogs to mimic and understand their substrate oxidation reactivities. However, high-valent M(IV) complexes of late transition metals are rare. We have recently reported a novel Co(IV)-dinitrate complex (1-NO3) that activates sp3 C-H bonds up to 87 kcal/mol. In this work, we have shown that the nitrate ligands in 1-NO3 can be replaced by azide, a more basic coordinating base, resulting in the formation of a more potent Co(IV)-diazide species (1-N3) that reacts with substrates (hydrocarbons and phenols) at faster rate constants and activates stronger C-H bonds than the parent complex 1-NO3. We have characterized 1-N3 employing a combination of spectroscopic and computational approaches. Our results clearly show that the coordination of azide leads to the modulation of the Co(IV) electronic structure and the Co(IV/III) redox potential. Together with the higher basicity of azide, these thermodynamic parameters contribute to the higher driving forces of 1-N3 than 1-NO3 for C-H bond activation. Our discoveries are thus insightful for designing more reactive bio-inspired high-valent late transition metal complexes for activating inert aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Michael Kayne
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Patrick S Murphy
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| |
Collapse
|
4
|
Gupta S, Sharma P, Jain K, Chandra B, Mallojjala SC, Draksharapu A. Proton-assisted activation of a Mn III-OOH for aromatic C-H hydroxylation through a putative [Mn VO] species. Chem Commun (Camb) 2024; 60:6520-6523. [PMID: 38836330 DOI: 10.1039/d4cc00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Adding HClO4 to [(BnTPEN)MnIII-OO]+ in MeOH generates a short-lived MnIII-OOH species, which converts to a putative MnVO species. The potent MnVO species in MeCN oxidizes the pendant phenyl ring of the ligand in an intramolecular fashion. The addition of benzene causes the formation of (BnTPEN)MnIII-phenolate. These findings suggest that high valent Mn species have the potential to catalyze challenging aromatic hydroxylation reactions.
Collapse
Affiliation(s)
- Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Parkhi Sharma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Khyati Jain
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bittu Chandra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
5
|
Pérez-Bitrián A, Munárriz J, Krause KB, Schlögl J, Hoffmann KF, Sturm JS, Hadi AN, Teutloff C, Wiesner A, Limberg C, Riedel S. Questing for homoleptic mononuclear manganese complexes with monodentate O-donor ligands. Chem Sci 2024; 15:5564-5572. [PMID: 38638238 PMCID: PMC11023055 DOI: 10.1039/d4sc00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Compounds containing Mn-O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2-, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2-, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2- (n = 4, 5) species (X = OTeF5, F), the Mn-X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species.
Collapse
Affiliation(s)
- Alberto Pérez-Bitrián
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 Berlin 12489 Germany
| | - Julen Munárriz
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza Pedro Cerbuna 12 Zaragoza 50009 Spain
| | - Konstantin B Krause
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 Berlin 12489 Germany
| | - Johanna Schlögl
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| | - Kurt F Hoffmann
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| | - Johanna S Sturm
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| | - Amiera N Hadi
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| | - Christian Teutloff
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 Berlin 12489 Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 Berlin 14195 Germany
| |
Collapse
|
6
|
Athan M, Krishnan S, Loganathan N. trans-Di-bromido-tetra-kis-(5-methyl-1 H-pyrazole-κ N2)manganese(II). IUCRDATA 2024; 9:x240237. [PMID: 38586519 PMCID: PMC10993565 DOI: 10.1107/s2414314624002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
The title compound, trans-di-bromido-tetra-kis-(5-methyl-1H-pyrazole-κN 2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic P space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the mol-ecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supra-molecular architecture is characterized by several inter-molecular C-H⋯N, N-H⋯Br, and C-H⋯π inter-actions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971 ▸). Inorg. Chem. 10, 2594-2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supra-molecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known.
Collapse
Affiliation(s)
- Manikumar Athan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Soundararajan Krishnan
- Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India
| | - Nagarajan Loganathan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
- UGC-Faculty Recharge Programme, University Grant Commission, New Delhi,India
| |
Collapse
|
7
|
Singh P, Lee Y, Mayfield JR, Singh R, Denler MC, Jones SD, Day VW, Nordlander E, Jackson TA. Enhanced Understanding of Structure-Function Relationships for Oxomanganese(IV) Complexes. Inorg Chem 2023; 62:18357-18374. [PMID: 37314463 DOI: 10.1021/acs.inorgchem.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of manganese(II) and oxomanganese(IV) complexes supported by neutral, pentadentate ligands with varied equatorial ligand-field strength (N3pyQ, N2py2I, and N4pyMe2) were synthesized and then characterized using structural and spectroscopic methods. On the basis of electronic absorption spectroscopy, the [MnIV(O)(N4pyMe2)]2+ complex has the weakest equatorial ligand field among a set of similar MnIV-oxo species. In contrast, [MnIV(O)(N2py2I)]2+ shows the strongest equatorial ligand-field strength for this same series. We examined the influence of these changes in electronic structure on the reactivity of the oxomanganese(IV) complexes using hydrocarbons and thioanisole as substrates. The [MnIV(O)(N3pyQ)]2+ complex, which contains one quinoline and three pyridine donors in the equatorial plane, ranks among the fastest MnIV-oxo complexes in C-H bond and thioanisole oxidation. While a weak equatorial ligand field has been associated with high reactivity, the [MnIV(O)(N4pyMe2)]2+ complex is only a modest oxidant. Buried volume plots suggest that steric factors dampen the reactivity of this complex. Trends in reactivity were examined using density functional theory (DFT)-computed bond dissociation free energies (BDFEs) of the MnIIIO-H and MnIV ═ O bonds. We observe an excellent correlation between MnIV═O BDFEs and rates of thioanisole oxidation, but more scatter is observed between hydrocarbon oxidation rates and the MnIIIO-H BDFEs.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shannon D Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Sen A, Ansari A, Swain A, Pandey B, Rajaraman G. Probing the Origins of Puzzling Reactivity in Fe/Mn-Oxo/Hydroxo Species toward C-H Bonds: A DFT and Ab Initio Perspective. Inorg Chem 2023; 62:14931-14941. [PMID: 37650771 DOI: 10.1021/acs.inorgchem.3c01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
9
|
Moore SM, Sun C, Steele JL, Laaker EM, Rheingold AL, Doerrer LH. HAA by the first {Mn(iii)OH} complex with all O-donor ligands. Chem Sci 2023; 14:8187-8195. [PMID: 37538819 PMCID: PMC10395311 DOI: 10.1039/d3sc01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
There is considerable interest in MnOHx moieties, particularly in the stepwise changes in those O-H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOHx}, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pinF)2- including the first example of a crystallographically characterized mononuclear {Mn(iii)OH} with all O-donors, K2[Mn(OH)(pinF)2], 3. Complex 3 is prepared via deprotonation of K[Mn(OH2)(pinF)2], 1, the pKa of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large ΔEp, assigned to the Mn(iii/ii) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O-H bond in {Mn(ii)-OH2} is estimated to be 67-70 kcal mol-1. Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K2[Mn(OAc)(pinF)2], 2, proposed to result from the oxidation of Et2O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et2O, but addition of O2 at low temperature effects the formation of a new chromophore proposed to be a Mn(iv) species. The related complexes K(18C6)[Mn(iii)(pinF)2], 4, and (Me4N)2[Mn(ii)(pinF)2], 5, have also been prepared and their properties discussed in relation to complexes 1-3.
Collapse
Affiliation(s)
- Shawn M Moore
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Chen Sun
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Jennifer L Steele
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Ellen M Laaker
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Arnold L Rheingold
- University of California, San Diego Department of Chemistry and Biochemistry 9500 Gilman Drive La Jolla California 92093 USA
| | - Linda H Doerrer
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| |
Collapse
|
10
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Hu H, Li Y, Li Y, Sun Y, Li Y. Carbamoyl Manganese Complexes for Epoxidation of Alkenes and Cycloaddition of Epoxides to Carbon Dioxide. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Liao G, Mei F, Chen Z, Yin G. Lewis acid improved dioxygen activation by a non-heme iron(II) complex towards tryptophan 2,3-dioxygenase activity for olefin oxygenation. Dalton Trans 2022; 51:18024-18032. [PMID: 36373374 DOI: 10.1039/d2dt02769k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dioxygen activation and catalysis around ambient temperature is a long-standing challenge in chemistry. Inspired by the significant roles of the hydrogen bond network in dioxygen activation and catalysis by redox enzymes, this work presents a Lewis acid improved dioxygen activation by an FeII(BPMEN)(OTf)2 complex towards tryptophan 2,3-dioxygenase (TDO) activity for 3-methylindole and common olefinic CC bond oxygenation and cleavage (enzymatic Brønsted acid vs. chemical Lewis acid). It was found that the presence of a Lewis acid such as Sc3+ could substantially improve olefinic CC bond oxygenation and cleavage activity through FeII(BPMEN)(OTf)2 catalyzed dioxygen activation. Notably, a more negative ρ value in the Hammett plot of para-substituted styrene oxygenations was observed in the presence of a stronger Lewis acid, disclosing the enhanced electrophilic oxygenation capability of the putative iron(III) superoxo species through its electrostatic interaction with a stronger Lewis acid. Thereof, this work has demonstrated a new strategy in catalyst design for dioxygen activation and catalysis for olefin oxygenation, a significant process in the chemical industry.
Collapse
Affiliation(s)
- Guangjian Liao
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
14
|
Jeon H, Kim J, Kim J, Cho KB, Hong S. An end-on bis(μ-hydroxido) dimanganese(II,III) azide complex for C-H bond and O-H bond activation reactions. Chem Commun (Camb) 2022; 58:4623-4626. [PMID: 35315854 DOI: 10.1039/d2cc01129h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of an end-on dinuclear Mn(II) azide complex with two bridging azide ligands that served as a precursor for the formation of an end-on bis(μ-hydroxido) dinuclear Mn(II,III) azide complex upon oxidation by organic peroxide or peracids. Combined experimental and theoretical studies on the reactivity of the end-on bis(μ-hydroxido) dinuclear Mn(II,III) azide complex suggest that the reaction with substrates having weak C-H bond and O-H bond dissociation energy occurred via a H-atom abstraction reaction in a concerted manner.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Jisoo Kim
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Jin Kim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
15
|
Li X, Lei H, Xie L, Wang N, Zhang W, Cao R. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc Chem Res 2022; 55:878-892. [PMID: 35192330 DOI: 10.1021/acs.accounts.1c00753] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are involved in biological and artificial energy conversions. H-H and O-O bond formation/cleavage are essential steps in these reactions. In nature, intermediates involved in the H-H and O-O bond formation/cleavage are highly reactive and short-lived, making their identification and investigation difficult. In artificial catalysis, the realization of these reactions at considerable rates and close to their thermodynamic reaction equilibria remains a challenge. Therefore, the elucidation of the reaction mechanisms and structure-function relationships is of fundamental significance to understand these reactions and to develop catalysts.This Account describes our recent investigations on catalytic HER, OER, and ORR with metalloporphyrins and derivatives. Metalloporphyrins are used in nature for light harvesting, energy conversion, electron transfer, O2 activation, and peroxide degradation. Synthetic metal porphyrin complexes are shown to be active for these reactions. We focused on exploring metalloporphyrins to study reaction mechanisms and structure-function relationships because they have stable and tunable structures and characteristic spectroscopic properties.For HER, we identified three H-H bond formation mechanisms and established the correlation between these processes and metal hydride electronic structures. Importantly, we provided direct experimental evidence for the bimetallic homolytic H-H bond formation mechanism by using sterically bulky porphyrins. Homolytic HER has been long proposed but rarely verified because the coupling of active hydride intermediates occurs spontaneously and quickly, making their detection challenging. By blocking the bimolecular mechanism through steric effects, we stabilized and characterized the NiIII-H intermediate and verified homolytic HER by comparing the reaction behaviors of Ni porphyrins with and without steric effects. We therefore provided an unprecedented example to control homolytic versus heterolytic HER mechanisms through tuning steric effects of molecular catalysts.For the OER, the water nucleophilic attack (WNA) on high-valent terminal Mn-oxo has been proposed for the O-O bond formation in natural and artificial water oxidation. By using Mn tris(pentafluorophenyl)corrole, we identified MnV(O) and MnIV-peroxo intermediates in chemical and electrochemical OER and provided direct experimental evidence for the Mn-based WNA mechanism. Moreover, we demonstrated several catalyst design strategies to enhance the WNA rate, including the pioneering use of protective axial ligands. By studying Cu porphyrins, we proposed a bimolecular coupling mechanism between two metal-hydroxide radicals to form O-O bonds. Note that late-transition metals do not likely form terminal metal-oxo/oxyl.For the ORR, we presented several strategies to improve activity and selectivity, including providing rapid electron transfer, using electron-donating axial ligands, introducing hydrogen-bonding interactions, constructing dinuclear cooperation, and employing porphyrin-support domino catalysis. Importantly, we used Co porphyrin atropisomers to realize both two-electron and four-electron ORR, representing an unparalleled example to control ORR selectivity by tuning only steric effects without modifying molecular and/or electronic structures.Lastly, we developed several strategies to graft metalloporphyrins on various electrode materials through different covalent bonds. The molecular-engineered materials exhibit boosted electrocatalytic performance, highlighting promising applications of molecular electrocatalysis. Taken together, this Account demonstrates the benefits of exploring metalloporphyrins for the HER, OER, and ORR. The knowledge learned herein is valuable for the development of porphyrin-based catalysts and also other molecular and material catalysts for small molecule activation reactions.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
16
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
18
|
Opalade AA, Grotemeyer EN, Jackson TA. Mimicking Elementary Reactions of Manganese Lipoxygenase Using Mn-hydroxo and Mn-alkylperoxo Complexes. Molecules 2021; 26:molecules26237151. [PMID: 34885729 PMCID: PMC8659247 DOI: 10.3390/molecules26237151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Manganese lipoxygenase (MnLOX) is an enzyme that converts polyunsaturated fatty acids to alkyl hydroperoxides. In proposed mechanisms for this enzyme, the transfer of a hydrogen atom from a substrate C-H bond to an active-site MnIII-hydroxo center initiates substrate oxidation. In some proposed mechanisms, the active-site MnIII-hydroxo complex is regenerated by the reaction of a MnIII-alkylperoxo intermediate with water by a ligand substitution reaction. In a recent study, we described a pair of MnIII-hydroxo and MnIII-alkylperoxo complexes supported by the same amide-containing pentadentate ligand (6Medpaq). In this present work, we describe the reaction of the MnIII-hydroxo unit in C-H and O-H bond oxidation processes, thus mimicking one of the elementary reactions of the MnLOX enzyme. An analysis of kinetic data shows that the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ oxidizes TEMPOH (2,2′-6,6′-tetramethylpiperidine-1-ol) faster than the majority of previously reported MnIII-hydroxo complexes. Using a combination of cyclic voltammetry and electronic structure computations, we demonstrate that the weak MnIII-N(pyridine) bonds lead to a higher MnIII/II reduction potential, increasing the driving force for substrate oxidation reactions and accounting for the faster reaction rate. In addition, we demonstrate that the MnIII-alkylperoxo complex [MnIII(OOtBu)(6Medpaq)]+ reacts with water to obtain the corresponding MnIII-hydroxo species, thus mimicking the ligand substitution step proposed for MnLOX.
Collapse
|
19
|
Tian J, Lin J, Zhang J, Xia C, Sun W. Asymmetric Epoxidation of Olefins Catalyzed by Substituted Aminobenzimidazole Manganese Complexes Derived from
L
‐Proline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Tian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Jisheng Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
20
|
Fukuzumi S, Lee Y, Nam W. Deuterium kinetic isotope effects as redox mechanistic criterions. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
| |
Collapse
|
21
|
Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Top Catal 2021. [DOI: 10.1007/s11244-021-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Opalade AA, Hessefort L, Day VW, Jackson TA. Controlling the Reactivity of a Metal-Hydroxo Adduct with a Hydrogen Bond. J Am Chem Soc 2021; 143:15159-15175. [PMID: 34494835 DOI: 10.1021/jacs.1c06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The enzymes manganese lipoxygenase (MnLOX) and manganese superoxide dismutase (MnSOD) utilize mononuclear Mn centers to effect their catalytic reactions. In the oxidized MnIII state, the active site of each enzyme contains a hydroxo ligand, and X-ray crystal structures imply a hydrogen bond between this hydroxo ligand and a cis carboxylate ligand. While hydrogen bonding is a common feature of enzyme active sites, the importance of this particular hydroxo-carboxylate interaction is relatively unexplored. In this present study, we examined a pair of MnIII-hydroxo complexes that differ by a single functional group. One of these complexes, [MnIII(OH)(PaPy2N)]+, contains a naphthyridinyl moiety capable of forming an intramolecular hydrogen bond with the hydroxo ligand. The second complex, [MnIII(OH)(PaPy2Q)]+, contains a quinolinyl moiety that does not permit any intramolecular hydrogen bonding. Spectroscopic characterization of these complexes supports a common structure, but with perturbations to [MnIII(OH)(PaPy2N)]+, consistent with a hydrogen bond. Kinetic studies using a variety of substrates with activated O-H bonds, revealed that [MnIII(OH)(PaPy2N)]+ is far more reactive than [MnIII(OH)(PaPy2Q)]+, with rate enhancements of 15-100-fold. A detailed analysis of the thermodynamic contributions to these reactions using DFT computations reveals that the former complex is significantly more basic. This increased basicity counteracts the more negative reduction potential of this complex, leading to a stronger O-H BDFE in the [MnII(OH2)(PaPy2N)]+ product. Thus, the differences in reactivity between [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ can be understood on the basis of thermodynamic considerations, which are strongly influenced by the ability of the latter complex to form an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Logan Hessefort
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
23
|
Yang C, Liu D, Wang T, Sun F, Qiu S, Wu G. Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Chem Commun (Camb) 2021; 57:9462-9465. [PMID: 34528953 DOI: 10.1039/d1cc02774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report a manganese-based oxidative cleavage of inactivated acetylacetonate, the mechanistic pathway of which resembles Dke1-catalyzed reactions of β-diketone and α-keto acid. This oxidative transformation proceeds through an acetylacetonate-pyruvate-oxalate pathway, which can be terminated at the stage of pyruvate through ligand/solvent variation. XRD, time-dependent GC-MS, and isotope-labeling studies suggested that our system represents the same cleaving specificity and dioxygenase-like reactivity of Dke1.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Dingqi Liu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Tongshuai Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Gang Wu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
24
|
Salamone M, Galeotti M, Romero-Montalvo E, van Santen JA, Groff BD, Mayer JM, DiLabio GA, Bietti M. Bimodal Evans-Polanyi Relationships in Hydrogen Atom Transfer from C(sp 3)-H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. J Am Chem Soc 2021; 143:11759-11776. [PMID: 34309387 PMCID: PMC8343544 DOI: 10.1021/jacs.1c05566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The applicability of the Evans-Polanyi (EP) relationship to HAT reactions from C(sp3)-H bonds to the cumyloxyl radical (CumO•) has been investigated. A consistent set of rate constants, kH, for HAT from the C-H bonds of 56 substrates to CumO•, spanning a range of more than 4 orders of magnitude, has been measured under identical experimental conditions. A corresponding set of consistent gas-phase C-H bond dissociation enthalpies (BDEs) spanning 27 kcal mol-1 has been calculated using the (RO)CBS-QB3 method. The log kH' vs C-H BDE plot shows two distinct EP relationships, one for substrates bearing benzylic and allylic C-H bonds (unsaturated group) and the other one, with a steeper slope, for saturated hydrocarbons, alcohols, ethers, diols, amines, and carbamates (saturated group), in line with the bimodal behavior observed previously in theoretical studies of reactions promoted by other HAT reagents. The parallel use of BDFEs instead of BDEs allows the transformation of this correlation into a linear free energy relationship, analyzed within the framework of the Marcus theory. The ΔG⧧HAT vs ΔG°HAT plot shows again distinct behaviors for the two groups. A good fit to the Marcus equation is observed only for the saturated group, with λ = 58 kcal mol-1, indicating that with the unsaturated group λ must increase with increasing driving force. Taken together these results provide a qualitative connection between Bernasconi's principle of nonperfect synchronization and Marcus theory and suggest that the observed bimodal behavior is a general feature in the reactions of oxygen-based HAT reagents with C(sp3)-H donors.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Eduardo Romero-Montalvo
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Jeffrey A. van Santen
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Benjamin D. Groff
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Gino A. DiLabio
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
25
|
Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJL, Xiao J. Oxidative Cleavage of Alkenes by O 2 with a Non-Heme Manganese Catalyst. J Am Chem Soc 2021; 143:10005-10013. [PMID: 34160220 PMCID: PMC8297864 DOI: 10.1021/jacs.1c05757] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The oxidative cleavage
of C=C double bonds with molecular
oxygen to produce carbonyl compounds is an important transformation
in chemical and pharmaceutical synthesis. In nature, enzymes containing
the first-row transition metals, particularly heme and non-heme iron-dependent
enzymes, readily activate O2 and oxidatively cleave C=C
bonds with exquisite precision under ambient conditions. The reaction
remains challenging for synthetic chemists, however. There are only
a small number of known synthetic metal catalysts that allow for the
oxidative cleavage of alkenes at an atmospheric pressure of O2, with very few known to catalyze the cleavage of nonactivated
alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol
for the selective oxidation of alkenes to carbonyls under 1 atm of
O2. For the first time, aromatic as well as various nonactivated
aliphatic alkenes could be oxidized to afford ketones and aldehydes
under clean, mild conditions with a first row, biorelevant metal catalyst.
Moreover, the protocol shows a very good functional group tolerance.
Mechanistic investigation suggests that Mn–oxo species, including
an asymmetric, mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are
involved in the oxidation, and the solvent methanol participates in
O2 activation that leads to the formation of the oxo species.
Collapse
Affiliation(s)
- Zhiliang Huang
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Renpeng Guan
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Muralidharan Shanmugam
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Elliot L Bennett
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
26
|
Narulkar DD, Ansari A, Vardhaman AK, Harmalkar SS, Lingamallu G, Dhavale VM, Sankaralingam M, Das S, Kumar P, Dhuri SN. A side-on Mn(III)-peroxo supported by a non-heme pentadentate N 3Py 2 ligand: synthesis, characterization and reactivity studies. Dalton Trans 2021; 50:2824-2831. [PMID: 33533342 DOI: 10.1039/d0dt03706k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mononuclear manganese(iii)-peroxo complex [MnIII(N3Py2)(O2)]+ (1a) bearing a non-heme N,N'-dimethyl-N-(2-(methyl(pyridin-2-ylmethyl)amino)ethyl)-N'-(pyridin-2-ylmethyl)ethane-1,2-diamine (N3Py2) ligand was synthesized by the reaction of [Mn(N3Py2)(H2O)](ClO4)2 (1) with hydrogen peroxide and triethylamine in CH3CN at 25 °C. The reactivity of 1a in aldehyde deformylation using 2-phenyl propionaldehyde (2-PPA) was studied and the reaction kinetics was monitored by UV-visible spectroscopy. A kinetic isotope effect (KIE) = 1.7 was obtained in the reaction of 1a with 2-PPA and α-[D1]-PPA, suggesting nucleophilic character of 1a. The activation parameters ΔH‡ and ΔS‡ were determined using the Eyring plot while Ea was obtained from the Arrhenius equation by performing the reaction between 288 and 303 K. Hammett constants (σp) of para-substituted benzaldehydes p-X-Ph-CHO (X = Cl, F, H, and Me) were linear with a slope (ρ) = 3.0. Computational study suggested that the side-on structure of 1a is more favored over the end-on structure and facilitates the reactivity of 1a.
Collapse
Affiliation(s)
- Dattaprasad D Narulkar
- School of Chemical Sciences, Goa University, Goa-403206, India. and Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao, Goa-403507, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India
| | - Anil Kumar Vardhaman
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
| | | | - Giribabu Lingamallu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
| | - Vishal M Dhavale
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai-600 113, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Sandip Das
- Indian Institute of Science Education and Research (IISER), Tirupati-517507, India
| | - Pankaj Kumar
- Indian Institute of Science Education and Research (IISER), Tirupati-517507, India
| | - Sunder N Dhuri
- School of Chemical Sciences, Goa University, Goa-403206, India.
| |
Collapse
|
27
|
Pinto LC, Oliveira TP, Souza R, Santos NBF, Santos LFP, Santos A, Santos TX, Santos CT, Nunes C, Costa IB, Oliveira AC, Santos MS, Benevides C, Lopes MV. Probiotic kefir‐fermented beverage‐based
Colocasia esculenta
L.: Development, characterization, and microbiological stability during chilled storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laise Cedraz Pinto
- Department of Food Science School of Nutrition Federal University of Bahia (UFBA) Salvador, Bahia Brazil
| | - Tainá Pinheiro Oliveira
- Department of Food Science School of Nutrition Federal University of Bahia (UFBA) Salvador, Bahia Brazil
| | - Rayane Souza
- Center for Agricultural Sciences Federal University of São Carlos (UFSCar) Araras São Paulo Brazil
| | | | | | - Andréa Santos
- Metropolitan Union of Education and Culture (UNIME) Lauro de Freitas Bahia Brazil
| | | | | | - Catarina Nunes
- Metropolitan Union of Education and Culture (UNIME) Lauro de Freitas Bahia Brazil
| | - Isis Barbosa Costa
- Metropolitan Union of Education and Culture (UNIME) Lauro de Freitas Bahia Brazil
| | | | - Marly Silveira Santos
- Department of Food Science School of Nutrition Federal University of Bahia (UFBA) Salvador, Bahia Brazil
| | - Clícia Benevides
- Department of Life Sciences State University of Bahia (UNEB) Salvador Bahia Brazil
| | | |
Collapse
|
28
|
Yu J, Lai W. Mechanistic insights into dioxygen activation by a manganese corrole complex: a broken-symmetry DFT study. RSC Adv 2021; 11:24852-24861. [PMID: 35481047 PMCID: PMC9036905 DOI: 10.1039/d1ra02722k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The Mn–oxygen species have been implicated as key intermediates in various Mn-mediated oxidation reactions. However, artificial oxidants were often used for the synthesis of the Mn–oxygen intermediates. Remarkably, the Mn(v)–oxo and Mn(iv)–peroxo species have been observed in the activation of O2 by Mn(iii) corroles in the presence of base (OH−) and hydrogen donors. In this work, density functional theory methods were used to get insight into the mechanism of dioxygen activation and formation of Mn(v)–oxo. The results demonstrated that the dioxygen cannot bind to Mn without the axial OH− ligand. Upon the addition of the axial OH− ligand, the dioxygen can bind to Mn in an end-on fashion to give the Mn(iv)–superoxo species. The hydrogen atom transfer from the hydrogen donor (substrate) to the Mn(iv)–superoxo species is the rate-limiting step, having a high reaction barrier and a large endothermicity. Subsequently, the O–C bond formation is concerted with an electron transfer from the substrate radical to the Mn and a proton transfer from the hydroperoxo moiety to the nearby N atom of the corrole ring, generating an alkylperoxo Mn(iii) complex. The alkylperoxo O–O bond cleavage affords a Mn(v)–oxo complex and a hydroxylated substrate. This novel mechanism for the Mn(v)–oxo formation via an alkylperoxo Mn(iii) intermediate gives insight into the O–O bond activation by manganese complexes. DFT calculations revealed a novel mechanism for the formation of Mn(v)–oxo in the dioxygen activation by a Mn(iii) corrole complex involving a Mn(iii)–alkylperoxo intermediate.![]()
Collapse
Affiliation(s)
- Jiangfeng Yu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenzhen Lai
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|
29
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
30
|
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes. Antioxidants (Basel) 2020; 9:antiox9080727. [PMID: 32785017 PMCID: PMC7465912 DOI: 10.3390/antiox9080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs.
Collapse
|
31
|
Rice DB, Grotemeyer EN, Donovan AM, Jackson TA. Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorg Chem 2020; 59:2689-2700. [PMID: 32045220 DOI: 10.1021/acs.inorgchem.9b02980] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Anna M Donovan
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
32
|
Affiliation(s)
- Charles W. Machan
- University of Virginia, McCormick Road,
PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
33
|
Mondal S, Sahu K, Patra B, Jena S, Biswal HS, Kar S. A new synthesis of porphyrins via a putative trans-manganese(iv)-dihydroxide intermediate. Dalton Trans 2020; 49:1424-1432. [PMID: 31915769 DOI: 10.1039/c9dt03573g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of meso-substituted porphyrins was developed. In this two-step methodology, the first step involves the condensation of pyrroles/dipyrromethanes with aldehydes in a water-methanol mixture under acidic conditions. The second step involves manganese induced cyclization followed by oxidation via PhIO/O2. This methodology has been useful for the synthesis of a wide range of trans-A2B2 porphyrins and also symmetric porphyrins in moderate to good yields. A detailed investigation of the manganese induced cyclization reaction has allowed us to characterize a Mn-porphyrinogen complex. A series of analytical and spectroscopic techniques and DFT calculations have led us to the conclusion that the putative intermediate species are trans-manganese(iv)-dihydroxide complexes. EPR and magnetic susceptibility measurements helped us to assign the oxidation state of the manganese complexes in their native state. The assumption of trans-manganese(iv)-dihydroxide as the true intermediate for this porphyrin synthesis has been authenticated via in situ UV-Vis experiments. This new methodology is certainly different from other previously reported methodologies in many aspects and most importantly these reactions can be easily performed on a gram scale for the synthesis of porphyrins.
Collapse
Affiliation(s)
- Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
| | | | | | | | | | | |
Collapse
|
34
|
Li XX, Guo M, Qiu B, Cho KB, Sun W, Nam W. High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorg Chem 2019; 58:14842-14852. [PMID: 31621303 DOI: 10.1021/acs.inorgchem.9b02543] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mononuclear nonheme manganese complexes are highly efficient catalysts in the catalytic oxidation of hydrocarbons by hydrogen peroxide in the presence of carboxylic acids. Although high-valent Mn(V)-oxo complexes have been proposed as the active oxidants that afford high regio-, stereo-, and enantioselectivities in the catalytic oxidation reactions, the importance of the spin state (e.g., S = 0 or 1) of the proposed Mn(V)-oxo species is an area that requires further study. In the present study, we have theoretically demonstrated that a mononuclear nonheme Mn(V)-oxo species with an S = 1 ground spin state is the active oxidant that effects the stereo- and enantioselective alkane hydroxylation reaction; it is noted that synthetic octahedral Mn(V)-oxo complexes, characterized spectroscopically and/or structurally, possess an S = 0 spin state and are sluggish oxidants. In an experimental approach, we have investigated the catalytic hydroxylation of alkanes by a mononuclear nonheme Mn(II) complex, [(S-PMB)MnII]2+, and H2O2 in the presence of carboxylic acids; alcohol is the major product with high stereo- and enantioselectivities. A synthetic Mn(IV)-oxo complex, [(S-PMB)MnIV(O)]2+, is inactive in C-H bond activation reactions, ruling out the Mn(IV)-oxo species as an active oxidant. DFT calculations have shown that a Mn(V)-oxo species with an S = 1 spin state, [(S-PMB)MnV(O)(OAc)]2+, is highly reactive and capable of oxygenating the C-H bond via oxygen rebound mechanism; we propose that the triplet spin state of the Mn(V)-oxo species results from the consequence of breaking the equatorial symmetry due to the binding of an equatorial oxygen from an acetate ligand. Thus, the present study reports that, different from the previously reported S = 0 Mn(V)-oxo species, Mn(V)-oxo species with a triplet ground spin state are highly reactive oxidants that are responsible for the regio-, stereo-, and enantioselectivities in the catalytic hydroxylation of alkanes by mononuclear nonheme manganese complexes and terminal oxidants.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mian Guo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Bin Qiu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Kyung-Bin Cho
- Department of Chemistry , Jeonbuk National University , Jeonju 54896 , Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
35
|
Rice DB, Massie AA, Jackson TA. Experimental and Multireference ab Initio Investigations of Hydrogen-Atom-Transfer Reactivity of a Mononuclear MnIV-oxo Complex. Inorg Chem 2019; 58:13902-13916. [DOI: 10.1021/acs.inorgchem.9b01761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allyssa A. Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
36
|
Parham JD, Wijeratne GB, Mayfield JR, Jackson TA. Steric control of dioxygen activation pathways for Mn II complexes supported by pentadentate, amide-containing ligands. Dalton Trans 2019; 48:13034-13045. [PMID: 31406966 PMCID: PMC6733413 DOI: 10.1039/c9dt02682g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dioxygen activation at manganese centers is well known in nature, but synthetic manganese systems capable of utilizing O2 as an oxidant are relatively uncommon. These present investigations probe the dioxygen activation pathways of two mononuclear MnII complexes supported by pentacoordinate amide-containing ligands, [MnII(dpaq)](OTf) and the sterically modified [MnII(dpaq2Me)](OTf). Dioxygen titration experiments demonstrate that [MnII(dpaq)](OTf) reacts with O2 to form [MnIII(OH)(dpaq)](OTf) according to a 4 : 1 Mn : O2 stoichiometry. This stoichiometry is consistent with a pathway involving comproportionation between a MnIV-oxo species and residual MnII complex to form a (μ-oxo)dimanganese(iii,iii) species that is hydrolyzed by water to give the MnIII-hydroxo product. In contrast, the sterically modified [MnII(dpaq2Me)](OTf) complex was found to react with O2 according to a 2 : 1 Mn : O2 stoichiometry. This stoichiometry is indicative of a pathway in which a MnIV-oxo intermediate abstracts a hydrogen atom from solvent instead of undergoing comproportionation with the MnII starting complex. Isotopic labeling experiments, in which the oxygenation of the MnII complexes was carried out in deuterated solvent, supported this change in pathway. The oxygenation of [MnII(dpaq)](OTf) did not result in any deuterium incorporation in the MnIII-hydroxo product, while the oxygenation of [MnII(dpaq2Me)](OTf) in d3-MeCN showed [MnIII(OD)(dpaq2Me)]+ formation. Taken together, these observations highlight the use of steric effects as a means to select which intermediates form along dioxygen activation pathways.
Collapse
Affiliation(s)
- Joshua D Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Gayan B Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
37
|
Sun W, Sun Q. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Acc Chem Res 2019; 52:2370-2381. [PMID: 31333021 DOI: 10.1021/acs.accounts.9b00285] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of efficient methods for the enantioselective oxidation of organic molecules continues to be an important goal in organic synthesis; in particular, the use of earth-abundant metal catalysts and environmentally friendly oxidants in catalytic asymmetric oxidation reactions has attracted significant interest over the last several decades. In nature, metalloenzymes catalyze a wide range of oxidation reactions by activating dioxygen under mild conditions. Inspired by selective and efficient oxidation reactions catalyzed by metalloenzymes, researchers have developed a number of synthetic model compounds that mimic the functionality of metalloenzymes. Among the reported biomimetic model compounds, tetradentate aminopyridine (N4) ligands have emerged as appealing frameworks because of their easy synthesis and facile diversification, and their complexes with metals such as Fe and Mn have proven to be versatile and powerful catalysts for a variety of (enantioselective) oxidation reactions. In this Account, we describe our efforts on the design of chiral N4 ligands and the use of their manganese and iron complexes in asymmetric oxidation reactions with H2O2 as the terminal oxidant, aiming to show general strategies for asymmetric oxidation reactions that can guide the rational design of ligands and relevant metal catalysts. In studies of manganese catalysts, the aryl-substituted (R,R)-mcp [mcp = N,N'-dimethyl-N,N'-bis(pyridine-2-ylmethyl)cyclohexane-1,2-diamine] manganese complexes exhibited high enantioselectivity in the asymmetric epoxidation (AE) of various olefins with H2O2 while requiring stoichiometric acetic acid as an additive for the activation of H2O2. To address this issue, we established bulkier N4 ligands for this catalytic system in which a catalytic amount of sulfuric acid enables the manganese-complex-catalyzed AE with improved stereocontrol and efficiency. In addition, this system was found to be active for the oxidative kinetic resolution of secondary alcohols. Further exploration of the structure-reactivity relationships has shown that aminobenzimidazole N4 ligands derived from l-proline, in which the conventional pyridine donors are replaced by benzimidazoles, act as promising ligands. These novel C1-symmetric manganese catalysts showed dramatically improved activities with unprecedented turnover numbers in the AE reactions. Notably, this class of manganese complexes can catalyze the oxidation of the C-H bonds of spirocyclic hydrocarbons and spiroazacyclic compounds in a highly enantioselective manner, providing ready access to chiral spirocyclic β,β'-diketones and spirocyclic alcohols. Remarkably, iron catalysts with these chiral N4 ligands are effective for AE of olefins, enabling rare examples of highly enantioselective syntheses of epoxides by the iron catalysts. Finally, mechanistic studies provide valuable insights into the roles of the carboxylic acid and sulfuric acid in the catalytic oxidation reactions. Thus, the results described in this Account have demonstrated the importance of tunability and compatibility of the ligands for the development of efficient oxidation catalysts with earth-abundant transition metals and environmentally benign oxidants, and we hope that our study will pave the way for the discovery of efficient oxidation catalysis.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
38
|
Barman SK, Jones JR, Sun C, Hill EA, Ziller JW, Borovik AS. Regulating the Basicity of Metal-Oxido Complexes with a Single Hydrogen Bond and Its Effect on C-H Bond Cleavage. J Am Chem Soc 2019; 141:11142-11150. [PMID: 31274298 DOI: 10.1021/jacs.9b03688] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The functionalization of C-H bonds is an essential reaction in biology and chemistry. Metalloenzymes that often exhibit this type of reactivity contain metal-oxido intermediates that are directly involved in the initial cleavage of the C-H bonds. Regulation of the cleavage process is achieved, in part, by hydrogen bonds that are proximal to the metal-oxido units, yet our understanding of their exact role(s) is still emerging. To gain further information into the role of H-bonds on C-H bond activation, a hybrid set of urea-containing tripodal ligands has been developed in which a single H-bond can be adjusted through changes in the properties of one ureayl N-H bond. This modularity is achieved by appending a phenyl ring with different para-substituents from one ureayl NH group. The ligands have been used to prepare a series of MnIII-oxido complexes, and a Hammett correlation was found between the pKa values of the complexes and the substituents on the phenyl ring that was explained within the context of changes to the H-bonds involving the MnIII-oxido unit. The complexes were tested for their reactivity toward 9,10-dihydroanthracene (DHA), and a Hammett correlation was found between the second-order rate constants for the reactions and the pKa values. Studies to determine activation parameters and the kinetic isotope effects are consistent with a mechanism in which rate-limiting proton transfer is an important contributor. However, additional reactivity studies with xanthene found a significant increase in the rate constant compared to DHA, even though the substrates have the same pKa(C-H) values. These results do not support a discrete proton-transfer/electron-transfer process, but rather an asynchronous mechanism in which the proton and electron are transferred unequally at the transition state.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Jason R Jones
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Chen Sun
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Ethan A Hill
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
39
|
Peng X, Chen Y, Mi Y, Zhuo L, Qi G, Ren J, Qiu Y, Liu X, Luo J. Efficient Electroreduction CO2 to CO over MnO2 Nanosheets. Inorg Chem 2019; 58:8910-8914. [DOI: 10.1021/acs.inorgchem.9b01018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianyun Peng
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ying Chen
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuying Mi
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Longchao Zhuo
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junqiang Ren
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuan Qiu
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
40
|
Vaddypally S, Tomlinson W, O’Sullivan OT, Ding R, Van Vliet MM, Wayland BB, Hooper JP, Zdilla MJ. Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. J Am Chem Soc 2019; 141:5699-5709. [DOI: 10.1021/jacs.8b10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Warren Tomlinson
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Owen T. O’Sullivan
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ran Ding
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Joseph P. Hooper
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
41
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Rice DB, Munasinghe A, Grotemeyer EN, Burr AD, Day VW, Jackson TA. Structure and Reactivity of (μ-Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorg Chem 2019; 58:622-636. [PMID: 30525518 DOI: 10.1021/acs.inorgchem.8b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mononuclear MnIII-hydroxo and dinuclear (μ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(μ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(μ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Aruna Munasinghe
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Andrew D Burr
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Timothy A Jackson
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
43
|
Denler MC, Massie AA, Singh R, Stewart-Jones E, Sinha A, Day VW, Nordlander E, Jackson TA. Mn IV-Oxo complex of a bis(benzimidazolyl)-containing N5 ligand reveals different reactivity trends for Mn IV-oxo than Fe IV-oxo species. Dalton Trans 2019; 48:5007-5021. [PMID: 30916103 DOI: 10.1039/c9dt00308h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using the pentadentate ligand (N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine, 2pyN2B), presenting two pyridyl and two (N-methyl)benzimidazolyl donor moieties in addition to a central tertiary amine, new MnII and MnIV-oxo complexes were generated and characterized. The [MnIV(O)(2pyN2B)]2+ complex showed spectroscopic signatures (i.e., electronic absorption band maxima and intensities, EPR signals, and Mn K-edge X-ray absorption edge and near-edge data) similar to those observed for other MnIV-oxo complexes with neutral, pentadentate N5 supporting ligands. The near-IR electronic absorption band maximum of [MnIV(O)(2pyN2B)]2+, as well as DFT-computed metric parameters, are consistent with the equatorial (N-methyl)benzimidazolyl ligands being stronger donors to the MnIV center than the pyridyl and quinolinyl ligands found in analogous MnIV-oxo complexes. The hydrogen- and oxygen-atom transfer reactivities of [MnIV(O)(2pyN2B)]2+ were assessed through reactions with hydrocarbons and thioanisole, respectively. When compared with related MnIV-oxo adducts, [MnIV(O)(2pyN2B)]2+ showed muted reactivity in hydrogen-atom transfer reactions with hydrocarbons. This result stands in contrast to observations for the analogous FeIV-oxo complexes, where [FeIV(O)(2pyN2B)]2+ was found to be one of the more reactive members of its class.
Collapse
Affiliation(s)
- Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee Y, Jackson TA. Ligand Influence on Structural Properties and Reactivity of Bis(μ-oxo)dimanganese(III,IV) Species and Comparison of Reactivity with Terminal MnIV
-oxo Complexes. ChemistrySelect 2018. [DOI: 10.1002/slct.201803668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Lee
- Department of Chemistry; The University of Kansas, 1567; Irving Hill Road Lawrence KS 66045 USA
| | - Timothy A. Jackson
- Department of Chemistry; The University of Kansas, 1567; Irving Hill Road Lawrence KS 66045 USA
| |
Collapse
|
45
|
Chemo-selective couplings of anilines and acroleins/enones under substrate control and condition control. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63134-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Oswald VF, Weitz AC, Biswas S, Ziller JW, Hendrich MP, Borovik AS. Manganese-Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg Chem 2018; 57:13341-13350. [PMID: 30299920 DOI: 10.1021/acs.inorgchem.8b01886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Andrew C Weitz
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Saborni Biswas
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
47
|
Carrasco CJ, Montilla F, Álvarez E, Galindo A. Synthesis of α,β-Dicarbonylhydrazones by Aerobic Manganese-Catalysed Oxidation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carlos J. Carrasco
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas; CSIC-Universidad de Sevilla; Avda. Américo Vespucio 49 41092 Sevilla Spain
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| |
Collapse
|
48
|
Saracini C, Malik DD, Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. Inorg Chem 2018; 57:10945-10952. [PMID: 30133298 DOI: 10.1021/acs.inorgchem.8b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Deesha D Malik
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-8502 , Japan
| |
Collapse
|
49
|
Massie AA, Sinha A, Parham JD, Nordlander E, Jackson TA. Relationship between Hydrogen-Atom Transfer Driving Force and Reaction Rates for an Oxomanganese(IV) Adduct. Inorg Chem 2018; 57:8253-8263. [PMID: 29974738 DOI: 10.1021/acs.inorgchem.8b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen atom transfer (HAT) reactions by high-valent metal-oxo intermediates are important in both biological and synthetic systems. While the HAT reactivity of FeIV-oxo adducts has been extensively investigated, studies of analogous MnIV-oxo systems are less common. There are several recent reports of MnIV-oxo complexes, supported by neutral pentadentate ligands, capable of cleaving strong C-H bonds at rates approaching those of analogous FeIV-oxo species. In this study, we provide a thorough analysis of the HAT reactivity of one of these MnIV-oxo complexes, [MnIV(O)(2pyN2Q)]2+, which is supported by an N5 ligand with equatorial pyridine and quinoline donors. This complex is able to oxidize the strong C-H bonds of cyclohexane with rates exceeding those of FeIV-oxo complexes with similar ligands. In the presence of excess oxidant (iodosobenzene), cyclohexane oxidation by [MnIV(O)(2pyN2Q)]2+ is catalytic, albeit with modest turnover numbers. Because the rate of cyclohexane oxidation by [MnIV(O)(2pyN2Q)]2+ was faster than that predicted by a previously published Bells-Evans-Polanyi correlation, we expanded the scope of this relationship by determining HAT reaction rates for substrates with bond dissociation energies spanning 20 kcal/mol. This extensive analysis showed the expected correlation between reaction rate and the strength of the substrate C-H bond, albeit with a shallow slope. The implications of this result with regard to MnIV-oxo and FeIV-oxo reactivity are discussed.
Collapse
Affiliation(s)
- Allyssa A Massie
- The University of Kansas , Chemistry Department , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Arup Sinha
- Lund University , Chemical Physics, Department of Chemistry , Box 124, SE-221 00 Lund , Sweden
| | - Joshua D Parham
- The University of Kansas , Chemistry Department , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Ebbe Nordlander
- Lund University , Chemical Physics, Department of Chemistry , Box 124, SE-221 00 Lund , Sweden
| | - Timothy A Jackson
- The University of Kansas , Chemistry Department , 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| |
Collapse
|
50
|
Rice DB, Jones SD, Douglas JT, Jackson TA. NMR Studies of a MnIII-hydroxo Adduct Reveal an Equilibrium between MnIII-hydroxo and μ-Oxodimanganese(III,III) Species. Inorg Chem 2018; 57:7825-7837. [DOI: 10.1021/acs.inorgchem.8b00917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Derek B. Rice
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shannon D. Jones
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Justin T. Douglas
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|