1
|
Wei C, Li Y, Shen L, Li J, Pang X, Li M. Sequence-Controlled Electrochemical Immobilization of Catalyst-Photosensitizer Oligomers for Tuning Photoelectrochemical Behaviors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20791-20796. [PMID: 39297789 DOI: 10.1021/acs.langmuir.4c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Immobilizing catalysts and photosensitizers on an electrode surface is crucial in interfacial energy conversion. However, their combination for optimizing catalytic performance is an unpredictable challenge. Herein, we report that catalyst and photosensitizer monomers are selectively grafted one-by-one addition onto the electrode surface by interfacial electrosynthesis to achieve composition and sequence-controlled oligomer photoelectrocatalytic monolayers. This electrosynthesis relies on the oxidative coupling reaction of carbazole and the reductive coupling reaction of vinyl on the catalyst and photosensitizer monomers, and it initiates on self-assembled monolayers and propagates with alternating positive and negative potentials. Each addition and completion of the target monomer can be quantitatively identified and monitored by optical and electrical responses and their linear coefficients as a function of reaction steps. The resulting composition and sequence-controlled monolayers exhibit tuning electrocatalytic behaviors including water splitting and CO2 reduction, indicating an efficient way to optimize the electro- and photocatalytic functions and performance of molecular materials.
Collapse
Affiliation(s)
- Chang Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lingyun Shen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jing Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xuan Pang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Shi Q, Zhang Z, Liu S. Precision Sequence-Defined Polymers: From Sequencing to Biological Functions. Angew Chem Int Ed Engl 2024; 63:e202313370. [PMID: 37875462 DOI: 10.1002/anie.202313370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Jayapurna I, Ruan Z, Eres M, Jalagam P, Jenkins S, Xu T. Sequence Design of Random Heteropolymers as Protein Mimics. Biomacromolecules 2023; 24:652-660. [PMID: 36638823 PMCID: PMC9930114 DOI: 10.1021/acs.biomac.2c01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Random heteropolymers (RHPs) have been computationally designed and experimentally shown to recapitulate protein-like phase behavior and function. However, unlike proteins, RHP sequences are only statistically defined and cannot be sequenced. Recent developments in reversible-deactivation radical polymerization allowed simulated polymer sequences based on the well-established Mayo-Lewis equation to more accurately reflect ground-truth sequences that are experimentally synthesized. This led to opportunities to perform bioinformatics-inspired analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition. Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules have been made available through an open source toolkit, the RHPapp.
Collapse
Affiliation(s)
- Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marco Eres
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Prajna Jalagam
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Spencer Jenkins
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Ren X, Guo C, Li X, Wu Y, Zhang Y, Li S, Zhang K. Protecting-Group-Free Iterative Divergent/Convergent Method for Preparing Sequence-Defined Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiangzhu Ren
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjuan Guo
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijuan Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yu Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shumu Li
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Polymerization kinetics analysis of a thermostable, sequence-controllable polyamide polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Maruyama K, Kanazawa A, Aoshima S. ABC-Type Periodic Terpolymer Synthesis by a One-Pot Approach Consisting of Oxirane- and Carbonyl-Derived Cyclic Acetal Generation and Subsequent Living Cationic Alternating Copolymerization with a Vinyl Monomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Lai T, Zhang P, Zhao J, Zhang G. Simple and Precision Approach to Polythioimidocarbonates and Hybrid Block Copolymer Derivatives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Lai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengfei Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Higuchi M, Kanazawa A, Aoshima S. Unzipping and scrambling
reaction‐induced
sequence control of copolymer chains via temperature changes during cationic
ring‐opening
copolymerization of cyclic acetals and cyclic esters. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Motoki Higuchi
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| |
Collapse
|
9
|
Abstract
In biological systems, the storage and transfer of genetic information rely on sequence-controlled nucleic acids such as DNA and RNA. It has been realized for quite some time that this property is not only crucial for life but could also be very useful in human applications. For instance, DNA has been actively investigated as a digital storage medium over the past decade. Indeed, the "hard-disk of life" is an obvious choice and a highly optimized material for storing data. Through decades of nucleic acids research, technological tools for parallel synthesis and sequencing of DNA have been readily available. Consequently, it has already been demonstrated that different types of documents (e.g., texts, images, videos, and industrial data) can be stored in chemically synthesized DNA libraries. However, DNA is subject to biological constraints, and its molecular structure cannot be easily varied to match technological needs. In fact, DNA is not the only macromolecule that enables data storage. In recent years, it has been demonstrated that a wide variety of synthetic polymers can also be used for such a purpose. Indeed, modern polymer synthesis allows the preparation of synthetic macromolecules with precisely controlled monomer sequences. Altogether, about a dozens of synthetic digital polymers have already been described, and many more can be foreseen. Among them, sequence-defined poly(phosphodiester)s are one of the most promising options. These polymers are prepared by stepwise phosphoramidite chemistry like chemically synthesized oligonucleotides. However, they are constructed with non-natural building blocks and therefore share almost no structural characteristics with nucleic acids, except phosphate repeat units. Still, they contain readable digital messages that can be deciphered by nanopore sequencing or mass spectrometry sequencing. In this Account, we describe our recent research efforts in synthesizing and sequencing optimal abiological digital poly(phosphodiester)s. A major advantage of these polymers over DNA is that their molecular structure can easily be varied to tune their properties. During the last 5 years, we have engineered the molecular structure of these polymers to adjust crucial parameters such as the storage density, storage capacity, erasability, and readability. Consequently, high-capacity PPDE chains, containing hundreds of bits per chains, can now be synthesized and efficiently sequenced using a routine mass spectrometer. Furthermore, sequencing data can be automatically decrypted with the help of decoding software. This new type of coded matter can also be edited using practical physical triggers such as light and organized in space by programmed self-assembly. All of these recent improvements are summarized and discussed herein.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Université, CNRS, Institute for Radical Chemistry, UMR 7273, 23 Av Escadrille Nomandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
10
|
Yang C, Wu KB, Deng Y, Yuan J, Niu J. Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:243-257. [PMID: 34336395 PMCID: PMC8320758 DOI: 10.1021/acsmacrolett.0c00855] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science. This Viewpoint will survey recent advances in the functional applications of sequence-controlled polymers and provide a perspective on the challenges and outlook for pursuing future applications of this fascinating class of macromolecules.
Collapse
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin B. Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Deng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
11
|
Nanjan P, Jose A, Thurakkal L, Porel M. Sequence-Defined Dithiocarbamate Oligomers via a Scalable, Support-free, Iterative Strategy. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pandurangan Nanjan
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678577, India
| | - Anna Jose
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678577, India
| | - Liya Thurakkal
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678577, India
| | - Mintu Porel
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678577, India
| |
Collapse
|
12
|
Walker CC, Genzer J, Santiso EE. Effect of Poly(vinyl butyral) Comonomer Sequence on Adhesion to Amorphous Silica: A Coarse-Grained Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47879-47890. [PMID: 32921047 DOI: 10.1021/acsami.0c10747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modulating a comonomer sequence, in addition to the overall chemical composition, is the key to unlocking the true potential of many existing commercial copolymers. We employ coarse-grained molecular dynamics (MD) simulations to study the behavior of random-blocky poly(vinyl butyral-co-vinyl alcohol) (PVB) melts in contact with an amorphous silica surface, representing the interface found in laminated safety glass. Our two-pronged coarse-graining approach utilizes both macroscopic thermophysical data and all-atom MD simulation data. Polymer-polymer nonbonded interactions are described by the fused-sphere SAFT-γ Mie equation of state, while bonded interactions are derived using Boltzmann inversion to match the bond and angle distributions from all-atom PVB chains. Spatially dependent polymer-surface interactions are mapped from a hydroxylated all-atom amorphous silica slab model and all-atom monomers to an external potential acting on the coarse-grained sites. We discovered an unexpected complex relationship between the blockiness parameter and the adhesion energy. The adhesion strength between PVB copolymers with intermediate VA content and silica was found to be maximal for random-blocky copolymers with a moderately high degree of blockiness rather than for diblock copolymers. We attribute this to two main factors: (1) changes in morphology, which dramatically alter the number of VA beads interacting with the surface and (2) a non-negligible contribution of vinyl butyral (VB) monomers to adhesion energy because of their preference to adsorb to zones with low hydroxyl density on the silica surface.
Collapse
Affiliation(s)
- Christopher C Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
Jia Z, Chen S, Jiang J, Mao X, Pan X, Wu J. Ring-Opening Alternating Copolymerization of O-Carboxyanhydrides of Lactic Acid and Malic Acid Using Hafnium Alkoxide Initiators with Different Stereo Selectivities and Activities. Inorg Chem 2020; 59:10353-10360. [PMID: 32586091 DOI: 10.1021/acs.inorgchem.0c01499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monomer sequence controllable syntheses of copolymers, including copolyesters, remain a challenge in polymer science. Although alternating sequence-controlled copolymerization of O-carboxyanhydrides (OCAs) can be achieved via using syndioselective initiators, the alternating copolymerization of lactic acid-derived O-carboxyanhydride (LacOCA) with other monomers still suffers from a lack of highly syndioselective initiators. In this work, a highly syndioselective system for the ring-opening polymerization (ROP) of LacOCA was achieved using a bulky amine tris(phenolate) hafnium alkoxide initiator with a high Pr value of 0.91. However, the stereoselectivities of amine tris(phenolate) hafnium alkoxide initiators for the ROP of malic acid O-carboxyanhydride (MalOCA) change to be modestly or lowly isoselective. Interestingly, despite the different stereoselectivities of this system for the two different monomers, the high syndioselectivity of the initiator for the ROP of LacOCA and the low activity of MalOCA in the ROP allow comparatively high rates of cross-propagation; consequently, the ring-opening alternating copolymerization (ROAP) of LacOCA and MalOCA was achieved successfully.
Collapse
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sicheng Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoyang Mao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
14
|
Affiliation(s)
- Jean‐François Lutz
- Université de Strasbourg, CNRSInstitut Charles Sadron, UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
15
|
Knox ST, Warren NJ. Enabling technologies in polymer synthesis: accessing a new design space for advanced polymer materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00474b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses how developments in laboratory technologies can push the boundaries of what is achievable using existing polymer synthesis techniques.
Collapse
Affiliation(s)
- Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
16
|
Ahn SH, Grate JW. Foldamer Architectures of Triazine-Based Sequence-Defined Polymers Investigated with Molecular Dynamics Simulations and Enhanced Sampling Methods. J Phys Chem B 2019; 123:9364-9377. [DOI: 10.1021/acs.jpcb.9b06067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Surl-Hee Ahn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jay W. Grate
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
17
|
Mimura M, Kanazawa A, Aoshima S. ABC Pseudo-Periodic Sequence Control by Cationic Orthogonal Terpolymerization of Vinyl Ether, Oxirane, and Ketone. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maki Mimura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Jiang J, Wang WJ, Li BG, Zhu S. 110th Anniversary: Model-Guided Preparation of Copolymer Sequence Distributions through Programmed Semibatch RAFT Mini-Emulsion Styrene/Butyl Acrylate Copolymerization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Institute of Zhejiang University − Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, P.R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| |
Collapse
|
19
|
Guo X, Wetzel KS, Solleder SC, Spann S, Meier MAR, Wilhelm M, Luy B, Guthausen G. 1
H PFG‐NMR Diffusion Study on a Sequence‐Defined Macromolecule: Confirming Monodispersity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoai Guo
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Katharina S. Wetzel
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Susanne C. Solleder
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Sebastian Spann
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Gisela Guthausen
- Institute for Mechanical Process Engineering and Mechanics and Engler‐Bunte‐Institut Chair of Water Chemistry and Water Technology Karlsruhe Institute of Technology (KIT) Adenauerring 20b 76131 Karlsruhe Germany
| |
Collapse
|
20
|
Zhang Z, DuBay KH. Modeling the Influence of Emergent and Self-Limiting Phase Separations among Nascent Oligomers on Polymer Sequences Formed during Irreversible Step-Growth Copolymerizations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongmin Zhang
- Department of Chemistry, The University of Virginia, Charlottesville, Virginia, United States
| | - Kateri H. DuBay
- Department of Chemistry, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
21
|
Doran D, Abul‐Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Doran
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | | | - Leroy Cronin
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
22
|
Doran D, Abul-Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019; 58:11253-11256. [PMID: 31206983 PMCID: PMC6772075 DOI: 10.1002/anie.201902287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Indexed: 01/06/2023]
Abstract
Living systems are characterised by an ability to sustain chemical reaction networks far-from-equilibrium. It is likely that life first arose through a process of continual disruption of equilibrium states in recursive reaction networks, driven by periodic environmental changes. Herein, we report the emergence of proto-enzymatic function from recursive polymerisation reactions using amino acids and glycolic acid. Reactions were kept out of equilibrium by diluting products 9:1 in fresh starting solution at the end of each recursive cycle, and the development of complex high molecular weight species is explored using a new metric, the Mass Index, which allows the complexity of the system to be explored as a function of cycle. This process was carried out on a range of different mineral environments. We explored the hypothesis that disrupting equilibrium via recursive cycling imposes a selection pressure and subsequent boundary conditions on products. After just four reaction cycles, product mixtures from recursive reactions exhibit greater catalytic activity and truncation of product space towards higher-molecular-weight species compared to non-recursive controls.
Collapse
Affiliation(s)
- David Doran
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
23
|
Sakhno Y, Battistella A, Mezzetti A, Jaber M, Georgelin T, Michot L, Lambert JF. One Step up the Ladder of Prebiotic Complexity: Formation of Nonrandom Linear Polypeptides from Binary Systems of Amino Acids on Silica. Chemistry 2019; 25:1275-1285. [PMID: 30284764 DOI: 10.1002/chem.201803845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Evidence for the formation of linear oligopeptides with nonrandom sequences from mixtures of amino acids coadsorbed on silica and submitted to a simple thermal activation is presented. The amino acid couples (glutamic acid+leucine) and (aspartic acid+valine) were deposited on a fumed silica and submitted to a single heating step at moderate temperature. The evolution of the systems was characterized by X-ray diffraction, infrared spectroscopy, thermosgravimetric analysis, HPLC, and electrospray ionization mass spectrometry (ESI-MS). Evidence for the formation of amide bonds was found in all systems studied. While the products of single amino acids activation on silica could be considered as evolutionary dead ends, (glutamic acid+leucine) and, at to some extent, (aspartic acid+valine) gave rise to the high yield formation of linear peptides up to the hexamers. Oligopeptides of such length have not been observed before in surface polymerization scenarios (unless the amino acids had been deposited by chemical vapor deposition, which is not realistic in a prebiotic environment). Furthermore, not all possible amino acid sequences were present in the activation products, which is indicative of polymerization selectivity. These results are promising for origins of life studies because they suggest the emergence of nonrandom biopolymers in a simple prebiotic scenario.
Collapse
Affiliation(s)
- Yuriy Sakhno
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Alice Battistella
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Maguy Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale, UMR 8220, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Thomas Georgelin
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France.,Temporary address: Centre de Biophysique Moléculaire, UPR 4301, CNRS, Rue Charles Sadron CS 80054, 45071, Orléans CEDEX 2, France
| | - Laurent Michot
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, UMR 8234, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| |
Collapse
|
24
|
Facile construction of Zn(II)-porphyrin-cored [5]rotaxane and its controllable aggregation behaviours. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Abstract
Sequence-defined polymer: A promising gateway for the next generation polymeric materials and vast opportunities for new synthetic strategies, functional diversity and its material and biomedical applications.
Collapse
Affiliation(s)
| | - Mintu Porel
- Discipline of Chemistry
- Indian Institute of Technology Palakkad
- India
| |
Collapse
|
26
|
Liu K, Li A, Yang Z, Jiang A, Xie F, Li S, Xia J, She Z, Tang K, Zhou C. Synthesis of strictly alternating copolymers by living carbanionic copolymerization of diphenylethylene with 1,3-pentadiene isomers. Polym Chem 2019. [DOI: 10.1039/c9py00008a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The living carbanionic alternating copolymerizations of 1,3-pentadiene isomers with DPE are reported, and yield well-defined alternating and highly stereoregular amorphous copolymers with controllable Mn, low ĐM and predominantly trans-1,4 units.
Collapse
|
27
|
Knox ST, Parkinson S, Stone R, Warren NJ. Benchtop flow-NMR for rapid online monitoring of RAFT and free radical polymerisation in batch and continuous reactors. Polym Chem 2019. [DOI: 10.1039/c9py00982e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A “Benchtop” NMR spectrometer is used for detailed monitoring of controlled and free radical polymerisations performed in batch and continuous reactors both offline and in real-time.
Collapse
Affiliation(s)
- Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- West Yorkshire
| | - Sam Parkinson
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- West Yorkshire
| | - Raphael Stone
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- West Yorkshire
| | - Nicholas J. Warren
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- West Yorkshire
| |
Collapse
|
28
|
Hill SA, Gerke C, Hartmann L. Recent Developments in Solid-Phase Strategies towards Synthetic, Sequence-Defined Macromolecules. Chem Asian J 2018; 13:3611-3622. [PMID: 30216690 DOI: 10.1002/asia.201801171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Sequence-control in synthetic polymers is an important contemporary research area because it provides the opportunity to create completely novel materials for structure-function studies. This is especially relevant for biomimetic polymers, bioactive and information security materials. The level of control is strongly dependent and inherent upon the polymerization technique utilized. Today, the most established method yielding monodispersity and monomer sequence-definition is solid-phase synthesis. This Focus Review highlights recent advances in solid-phase strategies to access synthetic, sequence-defined macromolecules. Alternatives strategies towards sequence-defined macromolecules are also briefly summarized.
Collapse
Affiliation(s)
- Stephen A Hill
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Gerke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
29
|
Huang Z, Noble BB, Corrigan N, Chu Y, Satoh K, Thomas DS, Hawker CJ, Moad G, Kamigaito M, Coote ML, Boyer C, Xu J. Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. J Am Chem Soc 2018; 140:13392-13406. [DOI: 10.1021/jacs.8b08386] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zixuan Huang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Donald S. Thomas
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Graeme Moad
- CSIRO, Manufacturing Bag 10, Clayton South, VIC 3169, Australia
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|