1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Yu J, Han Y, Zhang H, Misochko OV, Nakamura KG, Hu J. Attosecond-Resolved Coherent Control of Lattice Vibrations in Thermoelectric SnSe. J Phys Chem Lett 2022; 13:2584-2590. [PMID: 35289629 DOI: 10.1021/acs.jpclett.2c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Manipulating lattice vibrations is the cornerstone to achieving ultralow thermal conductivity in thermoelectrics. Although spatial control by novel material designs has been recently reported, temporal manipulation, which can shape thermoelectric properties under nonequilibrium conditions, remains largely unexplored. Here, taking SnSe as a representative, we have demonstrated that in the ultrafast pump-pump-probe spectroscopy, electronic and lattice coherences inherited from optical excitations can be exploited independently to manipulate phonon oscillations in a highly selective manner. Specifically, when the pump-pump delay time (tmod) is in the electronic coherence time range, the amplitude, frequency, and lifetime of all phonon modes are simultaneously following the optical cycle. While extending tmod into the lattice coherence time range, the amplitude of each coherent phonon mode can be selectively manipulated according to its intrinsic period without changing the frequency and lifetime. This work opens up exciting avenues to temporally and discriminatorily manipulate phononic processes in thermoelectric materials.
Collapse
Affiliation(s)
- Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yadong Han
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hang Zhang
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Oleg V Misochko
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
| | - Kazutaka G Nakamura
- Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Jianbo Hu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Han Y, Yu J, Zhang H, Xu F, Peng K, Zhou X, Qiao L, Misochko OV, Nakamura KG, Vanacore GM, Hu J. Photoinduced Ultrafast Symmetry Switch in SnSe. J Phys Chem Lett 2022; 13:442-448. [PMID: 34990128 DOI: 10.1021/acs.jpclett.1c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered tin selenide (SnSe) has recently emerged as a high-performance thermoelectric material with the current record for the figure of merit (ZT) observed in the high-temperature Cmcm phase. So far, access to the Cmcm phase has been mainly obtained via thermal equilibrium methods based on sample heating or application of external pressure, thus restricting the current understanding only to ground-state conditions. Here, we investigate the ultrafast carrier and phononic dynamics in SnSe. Our results demonstrate that optical excitations can transiently switch the point-group symmetry of the crystal from Pnma to Cmcm at room temperature in a few hundreds of femtoseconds with an ultralow threshold for the excitation carrier density. This nonequilibrium Cmcm phase is found to be driven by the displacive excitation of coherent Ag phonons and, given the absence of low-energy thermal phonons, exists in SnSe with the status of 'cold lattice with hot carriers'. Our findings provide an important insight for understanding the nonequilibrium thermoelectric properties of SnSe.
Collapse
Affiliation(s)
- Yadong Han
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Junhong Yu
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Hang Zhang
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Fang Xu
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kunlin Peng
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xiaoyuan Zhou
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Oleg V Misochko
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
- Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Kazutaka G Nakamura
- Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Yokohama, 226-8503, Japan
| | - Giovanni M Vanacore
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, Milano, 20121, Italy
| | - Jianbo Hu
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|