1
|
Jiang M, Yu L, Zou C, Yuan H, Xu M, Chen B, Hu P, Wang BQ, Cao P. Nickel-Catalyzed Enantioselective Carbonyl Addition of Aryl Chlorides and Bromides to Aldehydes. Chemistry 2024; 30:e202401591. [PMID: 38844428 DOI: 10.1002/chem.202401591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/31/2024]
Abstract
The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99 % yields with 53-92 % ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 °C in generally high yields with moderate enantioselectivities.
Collapse
Affiliation(s)
- Mingjie Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Limei Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chenhui Zou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Hao Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
2
|
Ji G, Chen X, Zhang J. Direct ketone synthesis from primary alcohols and alkenes enabled by a dual photo/cobalt catalysis. Nat Commun 2024; 15:6816. [PMID: 39122715 PMCID: PMC11316105 DOI: 10.1038/s41467-024-51190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Catalytic methods to couple alcohol and alkene feedstocks are highly valuable in synthetic chemistry. The direct oxidative coupling of primary alcohols and alkenes offers a streamlined approach to ketone synthesis. Currently, available methods are based on transition metal-catalyzed alkene hydroacylation, which involves the generation of an electrophilic aldehyde intermediate from primary alcohol dehydrogenation. These methods generally require high reaction temperatures and a high loading of precious metal catalysts and are predominantly effective for branch-selective reactions with electron-rich alkenes. Herein, we designed a dual photo/cobalt-catalytic method to manipulate the reactivity of nucleophilic ketyl radicals for the synthesis of ketones from primary alcohols and alkenes in complementary reactivity and selectivity. This protocol exhibits exceptional scope across both primary alcohols and alkenes with high chemo- and regio-selectivity under mild reaction conditions. Mechanism investigations reveal the essential role of cobalt catalysis in enabling efficient catalysis and broad substrate scope.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Xinqiang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
3
|
Kong L, Ti W, Lin A, Yao H, Huang Y, Li X. Palladium-Catalyzed Defluorinative Alkylation of gem-Difluoroalkenes with Cyclopropanols: Stereoselective Synthesis of γ-Fluorinated γ,δ-Unsaturated Ketones. Org Lett 2024; 26:3591-3596. [PMID: 38661127 DOI: 10.1021/acs.orglett.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A palladium-catalyzed defluorinative alkylation of gem-difluoroalkenes with cyclopropyl alcohols was developed. A range of γ-fluorinated γ,δ-unsaturated ketones were constructed in good yields with excellent stereoselectivities. In addition, by base-mediated intramolecular nucleophilic vinylic substitution (SNV), the products could be further transformed to 2,5-dimethylenetetrahydrofurans and analogues with excellent stereoselectivities.
Collapse
Affiliation(s)
- Lingyu Kong
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 210009, China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Hequan Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 210009, China
| | - Yue Huang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211098, China
| | - Xuanyi Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Joly N, Colella A, Mendy ME, Mbaye MD, Gaillard S, Poater A, Renaud JL. Blue-Light Induced Iron-Catalyzed Synthesis of γ,δ-Unsaturated Ketones. CHEMSUSCHEM 2024; 17:e202301472. [PMID: 38010264 DOI: 10.1002/cssc.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
A visible-light-induced iron-catalyzed α-alkylation of ketones with allylic and propargylic alcohols as pro-electrophiles is reported. The diaminocyclopentadienone iron tricarbonyl complex plays a dual role by harvesting light and facilitating dehydrogenation and reduction steps without the help of any exogenous photosensitizer. γ,δ-Unsaturated ketones can now be accessed through this borrowing hydrogen methodology at room temperature. Mechanistic investigations revealed that the steric hindrance on the δ-position of either the dienone or ene-ynone intermediate is the key feature to prevent or decrease the competitive 1,6-reduction (and consequently the formation of the saturated ketone) and to favor the synthesis of a set of non-conjugated enones and ynones.
Collapse
Affiliation(s)
- Nicolas Joly
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Alessandro Colella
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Monique-Edwige Mendy
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Université Assane Seck de Ziguinchor BP 523, Ziguinchor, Sénégal
| | | | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005, Paris, France
| |
Collapse
|
5
|
Spinello BJ, Strong ZH, Ortiz E, Evarts MM, Krische MJ. Intermolecular Metal-Catalyzed C‒C Coupling of Unactivated Alcohols or Aldehydes for Convergent Ketone Construction beyond Premetalated Reagents. ACS Catal 2023; 13:10976-10987. [PMID: 38464997 PMCID: PMC10923551 DOI: 10.1021/acscatal.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Intermolecular metal-catalyzed C‒C couplings of unactivated primary alcohols or aldehydes to form ketones are catalogued. Reactions are classified on the basis of pronucleophile. Protocols involving premetalated reagents or reactants that incorporate directing groups are not covered. These methods represent an emerging alternative to classical multi-step protocols for ketone construction that exploit premetalated reagents, and/or steps devoted to redox manipulations and carboxylic acid derivatization.
Collapse
Affiliation(s)
- Brian J Spinello
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Zachary H Strong
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Maddie M Evarts
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
6
|
Sankar RV, Manikpuri D, Gunanathan C. Ruthenium-catalysed α-prenylation of ketones using prenol. Org Biomol Chem 2023; 21:273-278. [PMID: 36374234 DOI: 10.1039/d2ob01882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenol and isoprenoids are common structural motifs in biological systems and possess diverse applications. An unprecedented direct catalytic prenylation of ketones using prenol is attained. This C-C bond formation reaction requires only a ruthenium pincer catalyst and a base, and H2O is the only byproduct.
Collapse
Affiliation(s)
- Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Deepsagar Manikpuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| |
Collapse
|
7
|
Organophotoredox-catalyzed ring-opening gem-difluoroallylation of nonstrained cycloalkanols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Zhang X, Yang TM, Hu LM, Hu XH. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp 2)–H Functionalization. Org Lett 2022; 24:8677-8682. [DOI: 10.1021/acs.orglett.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Ming Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204516. [DOI: 10.1002/anie.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
10
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
11
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel-Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202201370. [PMID: 35147282 DOI: 10.1002/anie.202201370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/03/2023]
Abstract
Enantioenriched alcohols comprise much of the framework of organic molecules. Here, we first report that chiral nickel complexes can catalyze the intermolecular enantioselective addition of aryl iodides across aldehydes to provide diverse optically active secondary alcohols using zinc metal as the reducing agent. This method shows a broad substrate scope under mild reaction conditions and precludes the traditional strategy through the pre-generation of organometallic reagents. Mechanistic studies indicate that an in situ formed arylnickel, instead of an arylzinc, adds efficiently to aldehydes, forming a new C-C bond and a chiral nickel alkoxide that may be turned over by zinc powder.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Wang X, Li Y, Wu X. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel‐Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziqi Zhu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jieshuai Xiao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mingjie Li
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zhuangzhi Shi
- Nanjing University 南京大学 School of Chemistry & Chemical Engineering 163 Xianlin Avenue栖霞区仙林大道163号南京大学化学化工学院 210046 Nanjing CHINA
| |
Collapse
|
14
|
Ghosh T, Bhakta S. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the recent advances in the field of nickel-catalyzed hydroarylation reaction of alkenes, alkynes, and arenes. All reactions proceeded either through internal hydride transfer or in presence of...
Collapse
|
15
|
Yi W, Sun W, Hu X, Liu C, Jin L. Recent Advance of Ketones Synthesis from Carboxylic Esters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Xiao S, Liu C, Song B, Wang L, Qi Y, Liu Y. Samarium-based Grignard-type addition of organohalides to carbonyl compounds under catalysis of CuI. Chem Commun (Camb) 2021; 57:6169-6172. [PMID: 34047318 DOI: 10.1039/d1cc00965f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Grignard-type additions were readily achieved under the mediation of CuI (10 mol%) and samarium (2 equiv.) by employing various organohalides, e.g. benzyl, aryl, heterocyclic and aliphatic halides (Cl, Br or I), and diverse carbonyl compounds (e.g. carbonic esters, carboxylic esters, acid anhydrides, acyl chlorides, ketones, aldehydes, propylene epoxides and formamides) to afford alcohols, ketones and aldehydes, respectively, with high efficiency and chemoselectivity, in which the organosamarium intermediate might be involved.
Collapse
Affiliation(s)
- Shuhuan Xiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chen Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bin Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Yan Qi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
17
|
Dokai Y, Nishizawa T, Saito K, Yamada T. Lewis
Acid‐Mediated Decarboxylative Allylation of Enol Carbonates. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoichi Dokai
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Takuma Nishizawa
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Kodai Saito
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| | - Tohru Yamada
- Department of Chemistry Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
18
|
Duan XY, Tian Z, Liu B, He T, Zhao LL, Dong M, Zhang P, Qi J. Highly Enantioselective Synthesis of Pyrroloindolones and Pyrroloquinolinones via an N-Heterocyclic Carbene-Catalyzed Cascade Reaction. Org Lett 2021; 23:3777-3781. [PMID: 33891421 DOI: 10.1021/acs.orglett.1c01203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the NHC-catalyzed Michael/Mannich/lactamization cascade reaction of enals with either indole-2-carboxaldehyde-derived aldimines or indole-7-carboxaldehyde-derived aldimines is described. This protocol enables the rapid assembly of optically active pyrroloindolones and pyrroloquinolinones derivatives under mild conditions with high yields, excellent enantioselectivities, and a broad substrate scope.
Collapse
|
19
|
Wu F, Xie J, Zhu Z. 1,10‐Phenanthroline: A versatile ligand to promote copper‐catalyzed cascade reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fengtian Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| | - Jianwei Xie
- College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425199 China
| | - Zhiqiang Zhu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| |
Collapse
|
20
|
Oeser P, Koudelka J, Dvořáková H, Tobrman T. Formation of trisubstituted buta-1,3-dienes and α,β-unsaturated ketones via the reaction of functionalized vinyl phosphates and vinyl phosphordiamidates with organometallic reagents. RSC Adv 2020; 10:35109-35120. [PMID: 35515642 PMCID: PMC9056830 DOI: 10.1039/d0ra07472a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
We studied the reactions of vinyl phosphates and vinyl phosphordiamidates containing an ester functional group with organometallic reagents. We found that the functionalized vinyl phosphates were smoothly converted into tri- and tetrasubstituted buta-1,3-dienes via the reaction with aryllithium reagents. Moreover, the vinyl phosphordiamidates were converted into α,β-unsaturated ketones using Grignard reagents. Based on the performed experiments, we proposed a reaction mechanism, which was confirmed by means of the isolation of key intermediates. We studied the reactions of vinyl phosphates and vinyl phosphordiamidates containing an ester functional group with organometallic reagents.![]()
Collapse
Affiliation(s)
- Petr Oeser
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic
| | - Jakub Koudelka
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
21
|
Li Y, Li W, Tian J, Huang G, Lv H. Nickel-Catalyzed Asymmetric Addition of Aromatic Halides to Ketones: Highly Enantioselective Synthesis of Chiral 2,3-Dihydrobenzofurans Containing a Tertiary Alcohol. Org Lett 2020; 22:5353-5357. [PMID: 32573236 DOI: 10.1021/acs.orglett.0c01612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective and straightforward synthetic procedure to chiral 3-hydroxy-2,3-dihydrobenzofurans has been developed by nickel/bisoxazoline-catalyzed intramolecular asymmetric addition of aryl halides to unactivated ketones, giving 2,3-dihydrobenzofurans with a chiral tertiary alcohol at the C-3 position in good yields and excellent enantioselectivities (up to 92% yield and 98% ee). The gram-scale reaction also proceeded smoothly without a loss of yield and enantioselectivity.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.,Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendian Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiangyan Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guozheng Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
22
|
Li HS, Lu SC, Chang ZX, Hao L, Li FR, Xia C. Rhodium-Catalyzed Ring-Opening Hydroacylation of Alkylidenecyclopropanes with Chelating Aldehydes for the Synthesis of γ,δ-Unsaturated Ketones. Org Lett 2020; 22:5145-5150. [PMID: 32610932 DOI: 10.1021/acs.orglett.0c01751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first intermolecular ring-opening hydroacylation of alkylidenecyclopropanes with chelating aldehydes through a rhodium-catalyzed acrylamide-promoted protocol is reported. This highly efficient catalytic system enables the direct synthesis of a diverse range of linear γ,δ-unsaturated ketones. Good functional group compatibility is demonstrated for the completely atom-economical and remarkably selective proximal C-C bond cleavage process. Mechanistic studies reveal that the bidentate coordination of N,N-dimethylmethacrylamide (L1) to the acylrhodium intermediates might facilitate the cyclopropane ring fragmentation and isomerization.
Collapse
Affiliation(s)
- Hong-Shuang Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P.R. China
| | - Zhi-Xin Chang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Liqiang Hao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Fu-Rong Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Chengcai Xia
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| |
Collapse
|
23
|
Farah AO, Rabah M, Beng TK. Transition metal-free domino acyl substitution/Michael addition of alkenyl Grignard reagents to lactam esters: synthesis of lactam-bearing homoallylic ketones. RSC Adv 2020; 10:22454-22459. [PMID: 35514603 PMCID: PMC9054586 DOI: 10.1039/d0ra03885g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/07/2020] [Indexed: 11/21/2022] Open
Abstract
A solvent-controlled protocol for the direct and transition metal-free addition of alkenyl Grignard reagents to vicinally functionalized sp3-rich morpholinones has been developed, leading to the chemo and regioselective synthesis of lactam-bearing homoallylic ketones. The addition of lithium chloride proved to be essential. In cases where a new stereocenter is generated, the doubly branched homoallylic ketones are obtained in unexpectedly high diastereoselectivities. Efforts to extend the methodology to other heterosubstituted lactams revealed some important reactivity and selectivity differences. A solvent-controlled and heteroatom-dictated protocol for the transition metal-free addition of alkenyl Grignard reagents to lactam esters has been developed, leading to the chemo- and regioselective synthesis of lactam-tethered homoallylic ketones.![]()
Collapse
Affiliation(s)
- Abdikani Omar Farah
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Muhannad Rabah
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
24
|
Zi QX, Yang CL, Li K, Luo Q, Lin J, Yan SJ. Multicomponent Cascade Reaction by Metal-Free Aerobic Oxidation for Synthesis of Highly Functionalized 2-Amino-4-coumarinyl-5-arylpyrroles. J Org Chem 2019; 85:327-338. [PMID: 31799851 DOI: 10.1021/acs.joc.9b02063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel approach has been constructed for the synthesis of two types of 2-amino-4-coumarinyl-5-arylpyrroles (ACAPs, 5 and 6) through a cascade reaction and a metal-free catalyzed aerobic oxidation reaction of arylglyoxal monohydrates 1, 1,1-enediamines (EDAMs) 2 and 3, and 4-hydroxy-2H-chromen-2-ones 4 via multicomponent reactions to produce the target compounds with good to excellent yields. Specifically, hydroxyl-substituted 2-amino-4-coumarinyl-5-arylpyrroles, that is, 2-amino-4-coumarinyl-5-aryl-6-hydroxylpyrroles (ACAHPs) 6, were obtained by metal-free aerobic oxidation in 1,4-dioxane at simple reflux for approximately 10 h. As a result, ACAHPs 6 have been produced without metal catalysts or traditional oxidizing agents. This method represents a route to obtain the novel ACAPs in an environmentally friendly, concise, rapid, and practical manner with potential biological activity of the product.
Collapse
Affiliation(s)
- Quan-Xing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Chang-Long Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Qin Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| |
Collapse
|
25
|
Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Nickel Catalyzed Intermolecular Carbonyl Addition of Aryl Halide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Seima Ishida
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Hiroyuki Suzuki
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Seiichiro Uchida
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| |
Collapse
|
26
|
Li K, Chen L, Fan YX, Wei Y, Yan SJ. Multicomponent Tether Catalysis Synthesis of Highly Functionalized 4-(Pyridin-2-ylmethyl)-2-aminopyrroles via Cascade Reaction Is Accompanied by Decarboxylation. J Org Chem 2019; 84:11971-11982. [DOI: 10.1021/acs.joc.9b01814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yun-Xiang Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yao Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
27
|
Peng JB, Wang LC, Wu XF. Palladium-catalyzed carbonylative/decarboxylative cross-coupling of α-bromo-ketones with allylic alcohols to γ,δ-unsaturated ketones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Crifar C, Dücker FL, Nguyen Thanh S, Kairouz V, Lubell WD. Heumann Indole Flow Chemistry Process. J Org Chem 2019; 84:10929-10937. [DOI: 10.1021/acs.joc.9b01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cynthia Crifar
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Fenja L. Dücker
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Sacha Nguyen Thanh
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Vanessa Kairouz
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|