1
|
Huang JH, Cui Y, Wang ZY, Zang SQ. Carborane Meets Metal Nanocluster: New Opportunities in Nanomaterials. Acc Chem Res 2025. [PMID: 40152172 DOI: 10.1021/acs.accounts.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
ConspectusMetal nanoclusters, distinguished by their atom-precise structures and quantum size effect, are regarded as a crucial bridge between organometallic complexes and plasmonic metal nanoparticles. These nanoclusters are primarily composed of a metallic core enveloped by protective ligands, wherein the ligands play a vital role in determining the nanoclusters' synthesis, structural integrity, and physicochemical properties. Considerable efforts in ligand engineering have concentrated on exploring novel coordinating functional groups to advance nanocluster research, particularly in the precise and controlled synthesis of superatomic nanoclusters, fine-tuning their intrinsic properties, and subsequent assembly and application. However, the backbone of these ligands seems equally important but attracts less attention. It is reasonable that if the utility of the two moieties (coordinating functional group and backbone) provokes a profound synergistic effect, their contributions to the structures and properties of the resultant metal nanoclusters are extremely inestimable. In this context, carborane, with its spherical shape and three-dimensional aromaticity (electronic effect), has emerged as a promising candidate for ligand backbone design. Over the past two decades, the incorporation of carborane moieties into ligands has enabled the construction of various metal nanoclusters exhibiting distinct architectures, enhanced stability, and unique reactivity. Therefore, it is important to present the current status and challenges associated with carboranyl ligand-protected metal nanoclusters to guide their future development. This Account provides a comprehensive summary of the recent advances in carboranyl ligand-stabilized metal nanoclusters, with a primary focus on the contributions from our laboratory. We begin by discussing the unique advantages of introducing carborane-based ligands in metal nanocluster preparation, with particular emphasis on their virtues for the synthesis of superatomic nanoclusters, heterometal-doped nanoclusters, and isostructural nanoclusters. Subsequently, we summarize the carborane-based ligand engineering strategies for precise modification and hierarchical assembly of metal nanoclusters, elucidating how the incorporation of carborane facilitates the modulation of specific properties and promotes supramolecular and covalent assembly. Furthermore, we discuss the cooperativity achieved by carboranyl ligands and the metal nanocluster framework to broaden the scope of applications for these nanoclusters in versatile fields, including hypergolic fuels, a previously unexplored area. Finally, we discuss the challenges facing future research on carboranyl ligand-protected metal nanoclusters, including the incorporation of nido-carborane or metallocarborane, a fundamental understanding of structure-property relationships, and potential applications such as boron neutron capture therapy and radionuclide extraction. This Account aims to stimulate interest in the unique attributes of carborane-based ligands and their corresponding metal nanoclusters among students and researchers across diverse disciplines, including chemistry, crystal engineering, and materials science.
Collapse
Affiliation(s)
- Jia-Hong Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yao Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Devi A, Seksaria H, Rashi, De Sarkar A, Patra A. Ligand-to-Metal Charge Transfer Controls the Photophysical Properties and HER Activity of Ag 13 Nanoclusters Depends on the Hydrogen Adsorption Energy. J Phys Chem Lett 2025; 16:2561-2569. [PMID: 40029951 DOI: 10.1021/acs.jpclett.5c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The hydrogen evolution reaction (HER) activity of ligand-protected metal nanoclusters (NCs) has been emphasized, where the ligands influence the electronic properties and hydrogen adsorption energy during the catalytic process. Here, we highlight the influence of the ligand-to-metal charge transfer (LMCT) on the photoluminescence (PL) properties and the adsorption free energy on the HER activity of Ag13 NCs. MALDI-MS analysis confirms the composition of the NCs as [Ag13(L)9] NCs [L = D-penicillamine (DPA), cysteine (CYS), and mercaptopropionyl glycine (MPG)]. XPS study and DFT calculations reveal that electron-donating ligands modulate the electron density of the Ag(I) core and cause a change in the HOMO-LUMO gap and PL properties due to LMCT. Partial density of states (PDOS) calculation shows that H 1s-Ag bonding occurs below the Fermi level, causing a substantial contribution of hydrogen to the valence band region in [Ag13(CYS)9] NCs. The optimal hydrogen adsorption energy and efficient charge transfer kinetics are the reasons for the superior HER activity in [Ag13(CYS)9] NCs.
Collapse
Affiliation(s)
- Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Harshita Seksaria
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
3
|
Cao P, Mu X, Chen F, Wang S, Liao Y, Liu H, Du Y, Li Y, Peng Y, Gao M, Liu S, Wang D, Dai Z. Breaking symmetry for better catalysis: insights into single-atom catalyst design. Chem Soc Rev 2025. [PMID: 40079812 DOI: 10.1039/d4cs01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Breaking structural symmetry has emerged as a powerful strategy for fine-tuning the electronic structure of catalytic sites, thereby significantly enhancing the electrocatalytic performance of single-atom catalysts (SACs). The inherent symmetric electron density in conventional SACs, such as M-N4 configurations, often leads to suboptimal adsorption and activation of reaction intermediates, limiting their catalytic efficiency. By disrupting this symmetry of SACs, the electronic distribution around the active center can be modulated, thereby improving both the selectivity and adsorption strength for key intermediates. These changes directly impact the reaction pathways, lowering energy barriers, and enhancing catalytic activity. However, achieving precise modulation through SAC symmetry breaking for better catalysis remains challenging. This review focuses on the atomic-level symmetry-breaking strategies of catalysts, including charge breaking, coordination breaking, and geometric breaking, as well as their electrocatalytic applications in electronic structure tuning and active site modulation. Through modifications to the M-N4 framework, three primary configurations are achieved: unsaturated coordination M-Nx(x=1,2,3), non-metallic doping MX-Nx(x=1,2,3), and bimetallic doping M1M2-N4. Advanced characterization techniques combined with density functional theory (DFT) elucidate the impact of these strategies on oxidation, reduction, and bifunctional catalytic reactions. This review highlights the significance of symmetry-breaking structures in catalysis and underscores the need for further research to achieve precise control at the atomic-level.
Collapse
Affiliation(s)
- Pingping Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xueqin Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Fanjiao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shengchen Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuru Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yapeng Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuxuan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingzhu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Sun J, Liu J, Su HF, Li S, Tang X, Xie Z, Xu Z, Jiang W, Wei J, Gong X, He A, Wang S, Jiang DE, Zheng N, Shen H. Eight-electron copper-hydride nanoclusters: synthesis, structure, alloying chemistry and photoluminescence. Chem Sci 2025:d4sc08547g. [PMID: 40092602 PMCID: PMC11907706 DOI: 10.1039/d4sc08547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
The first copper-hydride nanocluster featuring eight free valence electrons has been successfully isolated and characterized spectroscopically. The structure of the nanocluster, represented by the chemical formula [Cu47(PhSe)15(PPh3)5(CF3COO)12H12] (referred to as Cu47H12, where PPh3 denotes triphenylphosphine), has been precisely determined through single crystal X-ray diffraction analysis. Several distinguishing features differentiate the Cu47H12 clusters from previously reported examples. In terms of composition, these clusters represent a rare instance of high-nuclearity Cu nanoclusters containing hydride and stabilized by selenolate ligands. From an electronic standpoint, the stabilization of the nanocluster is achieved through its eight free valence electrons, marking it as the first copper-hydride cluster with this configuration. The alloying chemistry of the nanocluster also introduces unexpected findings in the field. The incorporation of silver atoms leads to the formation of [(CuAg)47(PhSe)18(PPh3)6(CF3COO)12H6]3+ clusters, which exhibit significant structural differences from the parent cluster. Both the homo and alloy clusters display dual-emission properties at 298 K, with the clusters additionally showcasing triple or even quadruple emission at 77 K. This work is anticipated to stimulate research interest in hydride-containing metal nanoclusters, focusing not only on compositional tailoring and structural engineering, but also on electronic structure details and potential applications.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Jiahe Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hai-Feng Su
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhenlang Xie
- College of Food Science and Engineering, Guangdong Ocean University Yangjiang 529500 China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wenya Jiang
- School of Materials and New Energy, Ningxia University Yinchuan Ningxia 750021 China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University Yinchuan Ningxia 750021 China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville Tennessee 37235 USA
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| |
Collapse
|
5
|
Zhou Y, Chen D, Gu W, Fan W, Wang R, Fang L, You Q, Zhuang S, Bian G, Liao L, Zhou Z, Xia N, Yang J, Wu Z. Chemical Synthesis of ~1 nm Multilevel Capacitor-like Particles with Atomic Precision. Angew Chem Int Ed Engl 2025; 64:e202420931. [PMID: 39620464 DOI: 10.1002/anie.202420931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Can the chemically synthesized nanoparticles act as nanodevices or nanomachines? Herein, we demonstrated this feasibility. A novel nanocluster (ultrasmall nanoparticle) [Au44Cd20(m-MBT)40][N(C8H17)4]2 (Au44Cd20 in short, m-MBTH: m-methylbenzenethiol) obtained via developing a synthesis method has a cannula-like structure of the outer shell and an internal sleeve, revealed by single-crystal X-ray diffraction. Natural population analysis (NPA) charge calculations, charge carrier transport of Au44Cd20 (during which an intra-nanocluster anti-galvanic reaction was observed) after unneutral charging using NaBH4 as well as voltammetry proved the capacitor-like character of Au44Cd20. The subsidiary capacitor-like character of the outer shell of Au44Cd20 was further probed via NPA charge calculations and electrocatalytic reduction of CO2 to CO. Thus, this study predicts a new era of engineering metal nanoparticles for realizing atomically precise ultrasmall nanodevices and nanomachines.
Collapse
Grants
- 21925303, 21829501, 21771186, 21501181, 21222301, 21171170, 21528303, 22171268, 22075290, 2272179 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56 Anhui Provincial Natural Science Foundation
- YZJJ202102, YZJJ202306-TS Special Foundation of President of HFIPS
- 2020HSC-CIP005, 2022HSC-CIP018 Collaborative Innovation Program of Hefei Science Center, CAS
- YZJJ2023QN28 Presidential Foundation of HFIPS of Chinese Academy of Sciences
- 2021M703251 China Postdoctoral Science Foundation
- MESO-23-A06, MESO-24-A01 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 21925303, 21829501, 21771186, 21501181, 21222301, 21171170, 21528303, 22471275,22171268, 22075290, 2272179, 22075291, 92475105, U24A20480, 22403096 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56, 2408085QB040 Anhui Provincial Natural Science Foundation
- YZJJ2023QN28, GGZX-GTCX-2023-07 Presidential Foundation of HFIPS of Chinese Academy of Sciences
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziyan Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
7
|
Yamazaki Y, Tomoyasu Y, Kawawaki T, Negishi Y. Activation of photocatalytic CO 2 reduction by loading hydrophobic thiolate-protected Au 25 nanocluster cocatalyst. NANOSCALE ADVANCES 2025:d4na01045k. [PMID: 39974339 PMCID: PMC11833898 DOI: 10.1039/d4na01045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
The photocatalytic carbon dioxide (CO2) reduction reaction (CO2RR), which reduces CO2 to various useful chemical compounds by light, has attracted attention to achieve carbon neutrality. In photocatalytic CO2RR, it is effective to load metal nanoparticles (NP) as cocatalysts on the surface of semiconductor photocatalysts to improve their activity and selectivity. In this study, we used ultrafine metal nanoclusters (NC) with a particle size of about 1 nm as cocatalysts to clarify the effect of surface ligands on the activity and selectivity of the photocatalytic CO2RR. As a result, it was shown that the introduction of hydrophobic ligands to the Au25 NC cocatalyst suppresses the competing hydrogen evolution reaction, thereby increasing the selectivity of CO2RR. In addition, the hydrophobic ligand-protected Au25 NC cocatalysts exhibited 66 times higher CO evolution rates per Au-loading weights than the Au NP cocatalysts with a particle size of about 7 nm. These results provide crucial insights into the creation of highly active metal NC cocatalysts for photocatalytic CO2RR.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuki Tomoyasu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yuichi Negishi
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aobaku Sendai 980-8577 Japan
| |
Collapse
|
8
|
Li X, Havenridge S, Gholipour-Ranjbar H, Forbes D, Crain W, Liu C, Laskin J. Structural Changes in Metal Chalcogenide Nanoclusters Associated with Single Heteroatom Incorporation. J Phys Chem A 2025; 129:1310-1317. [PMID: 39841591 DOI: 10.1021/acs.jpca.4c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important. In this study, we present a benchmarking approach based on metal chalcogenide NCs as a model system. We synthesized a series of bimetallic, iron-cobalt chalcogenide NCs [Co6-xFexS8(PEt3)6]+ (x = 0-6) (PEt = triethyl phosphine) and investigated the effect of heteroatoms in the octahedral metal chalcogenide core on their size and electronic properties. Using ion mobility-mass spectrometry (IM-MS), we observed a gradual increase in the collision cross section (CCS) with an increase in the number of Fe atoms in the core. DFT calculations combined with trajectory method CCS simulations successfully reproduced this trend, revealing that the increase in cluster size is primarily due to changes in metal-ligand bond lengths, while the electronic properties of the core remain largely unchanged. Moreover, this method allowed us to exclude certain multiplicity states of the NCs, as their CCS values were significantly different from those predicted for the lowest-energy structures. This study demonstrates that gas-phase IM-MS is a powerful technique for detecting subtle size differences in atomically precise NCs, which are often challenging to observe using conventional NC characterization methods. Accurate CCS measurements are established as a benchmark for comparison with theoretical calculations. The excellent correspondence between experimental data and theoretical predictions establishes a robust foundation for investigating structural changes of transition metal NCs of interest to a broad range of applications.
Collapse
Affiliation(s)
- Xilai Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shana Havenridge
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Dylan Forbes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wyatt Crain
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Yadav V, Jana A, Acharya S, Malola S, Nagar H, Sharma A, Kini AR, Antharjanam S, Machacek J, Adarsh KNVD, Base T, Häkkinen H, Pradeep T. Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties. Nat Commun 2025; 16:1197. [PMID: 39885129 PMCID: PMC11782596 DOI: 10.1038/s41467-025-56385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
We report the synthesis of [Ag17(o1-CBT)12]3- abbreviated as Ag17, a stable 8e⁻ anionic cluster with a unique Ag@Ag12@Ag4 core-shell structure, where o1-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg16(o1-CBT)12]3- (AuAg16), [Ag13Cu4(o1-CBT)12]3- (Ag13Cu4) and [AuAg12Cu4(o1-CBT)12]3- (AuAg12Cu4). These substitutions make systematic modulation of their structural and electronic properties. We show that Au preferentially occupies the core, while Cu localizes in the tetrahedral shell, influencing stability and structural diversity of the clusters. The band gap expands systematically (2.09 eV for Ag17 to 2.28 eV for AuAg12Cu4), altering optical absorption and emission. Ultrafast optical measurements reveal longer excited-state lifetimes for Cu-containing clusters, highlighting the effect of heteroatom incorporation. These results demonstrate a tunable platform for designing nanoclusters with tailored electronic properties, with implications for optoelectronics and catalysis.
Collapse
Affiliation(s)
- Vivek Yadav
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Arijit Jana
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sami Malola
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland
| | - Harshita Nagar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ankit Sharma
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic.
| | - Hannu Häkkinen
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India.
| |
Collapse
|
10
|
Ding XY, Shi LX, Wang JY, Xu LJ, Zhang LY, Chen ZN. Doping Copper(I) in Ag 7 Cluster for Circularly Polarized OLEDs with External Quantum Efficiency of 26.7 . Angew Chem Int Ed Engl 2025; 64:e202417934. [PMID: 39627994 DOI: 10.1002/anie.202417934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 12/14/2024]
Abstract
Hetero-metal doping or substitution to create alloy clusters is a highly appealing strategy for improving physicochemical characteristics as well as tailoring optical and electronic properties, although high-yield synthesis of alloy clusters with precise positioning of doped metals is a daunting challenge. Herein, we manifest rational synthesis of chiral alloy cluster enantiomers R/S-Ag6Cu in 85 %-87 % yield by replacing one Ag(I) atom with Cu(I) in homometallic clusters R/S-Ag7, achieving circularly polarized luminescence (CPL) with a quantum yield beyond 90 %. As a small energy gap (ca. 0.07 eV) between S1 and T1 states facilitates thermally activated delay fluorescence (TADF) through reverse intersystem crossing (RISC), the photoluminescence (PL) of R/S-Ag7 and R/S-Ag6Cu at ambient temperature originates mostly from TADF (85 % and 86 %) in place of phosphorescence (15 % and 14 %). Relative to those of R/S-Ag7, copper(I) doping not only triples PL quantum yields of R/S-Ag6Cu due to accelerating ISC (intersystem crossing) and RISC, but also doubles CPL asymmetry factors of R/S-Ag6Cu ascribed to rigidizing cluster structure through stronger Ag-Cu interaction apart from dramatically improving thermodynamic stability. Solution-processable circularly polarized organic light-emitting diodes (CP-OLEDs) demonstrate high-efficiency circularly polarized electroluminescence (CPEL) with external quantum efficiency (EQE) of 26.7 %, which is superior to most of red-emitting OLEDs through solution process.
Collapse
Affiliation(s)
- Xu-Yang Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100039, China (LJX) (ZNC
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100039, China (LJX) (ZNC
| |
Collapse
|
11
|
He A, Zuo D, Jiang G, Tang X, Wang L, Feng L, Zhao Z, Wei J, Zheng N, Shen H. Eight-electron Pt/Cu superatom encapsulating three "electron-donating" hydrides. SCIENCE ADVANCES 2025; 11:eads4488. [PMID: 39772673 PMCID: PMC11708884 DOI: 10.1126/sciadv.ads4488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two. There is even no structure model, neither theoretical nor experimental, for encapsulating a third electron-donating hydride into one cluster entity. Here, we present a structurally precise superatomic nanocluster, PtH3Cu23(iso-propyl-PhS)18(PPh3)4 (PtH3Cu23), which contains three interstitial electron-donating hydrides. The molecular structure of PtH3Cu23 describes the encapsulation of a PtCu12 core that contains three interstitial hydrides in a distorted anticuboctahedral architecture, in an outer sphere consisting of copper atoms and thiolate and phosphine ligands. Density functional theory calculations reveal that the three hydrides in PtH3Cu23 contribute their valence electrons to the cluster superatomic electron count of eight. In this regard, the cluster represents a rare Pt-included copper-hydride superatom with eight free electrons.
Collapse
Affiliation(s)
- Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Guangmei Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Liubin Feng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
12
|
Fan JQ, Li Y, Wu Xu W, Li MB. Loading Lewis Acid/Base Pair on Metal Nanocluster for Catalytic Ugi Reaction. Angew Chem Int Ed Engl 2025; 64:e202413861. [PMID: 39267548 DOI: 10.1002/anie.202413861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Constructing structurally robust and catalytically active metal nanoclusters for catalyzing multi-component reactions is an interesting while challenging task. Inspired by Lewis acid and Lewis base catalysis, we realized the combination of both Lewis acid and Lewis base sites on the surface of a stable gold nanocluster Au35Cd2. The catalytic potential of Au35Cd2 in four-component Ugi reaction was explored, demonstrating high activity and exceptional recyclability. In-depth mechanism studies indicate that the catalytic synergy of the Lewis acid/base pair is crucial for the high efficiency of Au35Cd2-catalyzed Ugi reaction. Bearing the stable structure, multiple activation sites and hierarchical chirality, Au35Cd2 is expected to display further interesting catalytic performance such as asymmetric catalysis.
Collapse
Affiliation(s)
- Ji-Qiang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
- School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
13
|
Nakatani R, Sakai J, Saha A, Kondo A, Tomioka R, Kawawaki T, Das S, Negishi Y. Designed construction of two new atom-precise three-dimensional and two-dimensional Ag 12 cluster-assembled materials. NANOSCALE 2025; 17:813-822. [PMID: 39585368 DOI: 10.1039/d4nr03992k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Silver cluster-assembled materials (SCAMs) are well-defined crystalline extended materials hallmarked by their unique geometric structures, atomically precise designability and functional modularity. In this study, we report for the first time the synthesis of a (3,6)-connected three-dimensional (3D) SCAM, [Ag12(StBu)6(CF3COO)6(TPMA)6]n (designated as TUS 6), TPMA = tris(pyridine-4-ylmethyl)amine, by assembling Ag12 cluster nodes with the help of a tritopic linker TPMA. Besides, we also prepared a two-dimensional (2D) SCAM, [Ag12(StBu)6(CF3COO)6(TPEB)6]n (described as TUS 7), TPEB = 1,3,5-tris(pyridine-4-ylethynyl)benzene, by reticulating Ag12 nodes with a tritopic linker TPEB. Characterized by microscopic and diffraction analyses, the SCAMs revealed distinct morphologies, structural robustness, and phase purity. This paper elucidates how the binding with the organic linkers alters the symmetry of the silver nanoclusters (NCs). Changes in the symmetry of discrete NCs to assembled structures have not been reported yet. This study provides an atomic-level explanation of the transformation of symmetry from NCs to extended structures.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Aishik Saha
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Ayumu Kondo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
14
|
Bose P, Srikrishnarka P, Paatelainen M, Nonappa, Kini AR, Som A, Pradeep T. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. NANOSCALE 2025; 17:803-812. [PMID: 39377419 DOI: 10.1039/d4nr02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Atomically precise noble metal nanoclusters (NCs) are molecular materials known for their precise composition, electronic structure, and unique optical properties, exhibiting chemical reactivity. Herein, we demonstrated a simple one-pot method for fabricating self-assembled Ag-Au bimetallic mesostructures using a reaction between 2-phenylethanethiol (PET)-protected atomically precise gold NCs and colloidal silver nanoparticles (Ag NPs) in a tunable reaction microenvironment. The reaction carried out in toluene at 45 °C with constant stirring at 250 revolutions per minute (RPM) yielded a thermally stable, micron-sized cuboidal mesocrystals of self-assembled AgAu@PET nanocrystals. However, the reaction in dichloromethane at room temperature with constant stirring at 250 RPM resulted in a self-assembled mesostructure of randomly close-packed AgAu@PET NPs. Using a host of experimental techniques, including optical and electron microscopy, optical absorption spectroscopy, and light scattering, we studied the nucleation and growth processes. Our findings highlight a strategy to utilize precision and plasmonic NP chemistry in tailored microenvironments, leading to customizable bimetallic hybrid three-dimensional nanomaterials with potential applications.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Matias Paatelainen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
15
|
Alishan Y, Joseph A, Pillai AB, Aparna RK, Sarkar R, Chakraborty S, Mandal S, Namboothiry MAG. Metal Nanoclusters for Interface Engineering and Improved Photovoltaic Performance in Organic Solar Cells. ACS NANO 2024; 18:35383-35392. [PMID: 39680717 DOI: 10.1021/acsnano.4c12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Copper nanoclusters (Cu NCs), synthesized by a one-pot synthesis method, were theoretically shown to exhibit a dipole moment and cause work function modification on a surface as observed from Kelvin probe measurement. Here, Cu NCs were used as an interfacial modifier in organic solar cells (OSCs). The effective engineering of the electron transporting layer/active layer interface using Cu NCs resulted in improved photovoltaic performance in fullerene and non-fullerene based OSCs. On insertion of Cu NCs, the best power conversion efficiency (PCE) obtained for the non-fullerene based system was 15.83% compared to 14.22% for the control device, while the PCE increased from 7.79% to 8.62% for the fullerene based system. The interface modification resulted in reduced recombination losses and charge accumulation at the interfaces. The improved performance in Cu NC interfaced devices is attributed to work function modification, enabling reduced energy barrier and enhanced charge collection.
Collapse
Affiliation(s)
- Yousuf Alishan
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| | - Alvin Joseph
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| | - Anitha B Pillai
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| | - Ravari Kandy Aparna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| | - Ranjini Sarkar
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
- Ceramic Technologies Group Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| | - Manoj A G Namboothiry
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
16
|
Zhang LP, Fang JJ, Liu Z, Xie YP, Lu X. Recent Progress in Atomically Precise Cu-M Alloy Nanoclusters. Chemistry 2024:e202404281. [PMID: 39727333 DOI: 10.1002/chem.202404281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships. A notable subgroup within this category comprises Cu-M (where M represents metals such as Au, Ag, Rh, Ir, Pd, Pt, Zn, Al etc.) alloy NCs. In this review, we initially outline recent advancements in the development of efficient synthetic techniques for Cu-M alloy NCs, emphasizing the underlying physical and chemical properties that enable precise control over their sizes and surface characteristics. Subsequently, we delve into recent progress in structural elucidation techniques for Cu-M alloy NCs. This structural insight is instrumental in comprehensively understanding the structure-property correlations at the molecular level. Finally, we showcase various examples of Cu-M alloy NCs to illustrate their photoluminescent and catalytic properties, shedding light on their diverse functionalities and potential applications.
Collapse
Affiliation(s)
- Lai-Ping Zhang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453000, China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department College of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
17
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
18
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
19
|
Wu J, Wang C, Chen L, Lv Y, Cui M, Li Q, Zhang X, Wang C, Yu H, Zhu M. Chiral Amphiphilic Au 23 Cluster and Its Specific Recognition to Remote Di-amines. Chemistry 2024; 30:e202403034. [PMID: 39189361 DOI: 10.1002/chem.202403034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
The atomic precision of metal nanoclusters and variability of surface ligands pave the way for their rational design and functionalization, whereas the property strengthening in multiple ways has been long challenging. Herein, improved amphiphilicity, chirality, thermostability, and strong CPL (circularly polarized luminescence) properties have been accomplished by facile ligand exchange of [Au23(CHT)16]- with HCapt (HCHT and HCapt denote cyclohexanethiol and captopril). In addition, the obtained chiral [Au23(SR)16]- (short for [Au23(CHT)16-x(Capt)x]-) clusters show specific binding affinity to remote-diamines (such as arginine and single/double strand DNA), originating from the hydrogen bonding and Van der Waals interaction among the surface Capt ligands and the di-amine groups.
Collapse
Affiliation(s)
- Junfei Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Chen Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Ling Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Mengting Cui
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Qingliang Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Xiangyu Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
20
|
Liu H, Huang B, Shao Y, Pei Y. Hetero and Homo Metal Exchange of Au 25(SR) 18 - and Ag 25(SR) 18 - Clusters with Metal-Thiolate Complexes: Ab Initio Molecular Dynamics Simulation Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403520. [PMID: 39109564 DOI: 10.1002/smll.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Indexed: 11/21/2024]
Abstract
The hetero and homo metal exchange of Au25(SR)18 - and Ag25(SR)18 - nanoclusters with metal-thiolate (M-SR) complexes (AuI(SR), AgI(SR), CuI(SR), and CuII(SR)2) are studied using ab initio molecular dynamics (AIMD) simulations. The AIMD simulation results unveil that the M-SR complexes directly displace Au(SR) or Ag(SR) units on the gold or silver core surface through an "anchoring effect". The whole process of metal-exchange reactions can be divided into three steps, including the adsorption of M-SR complexes on clusters, the formation of new staple motif, and the displacement of Au(SR) or Ag(SR) units by M-SR complexes. The key role of sulfur atoms in metal exchange reactions in M-SR complexes is revealed, which facilitates formation of new staple motifs and doping of M-SR complexes into gold and silver cores. This work provides a theoretical basis for further exploring the metal exchange reaction between noble metal nanoclusters and metal-thiolate complexes, as well as the isotope exchange reactions.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Baoyu Huang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Youyuan Shao
- School of Chemical Engineering and Energy Technology, Guangdong Provincial Key Laboratory of Distributed Energy System, Dongguan University of Technology, Dongguan, 523808, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
| |
Collapse
|
21
|
Fei W, Tang SY, Li MB. Luminescent metal nanoclusters and their application in bioimaging. NANOSCALE 2024; 16:19589-19605. [PMID: 39359125 DOI: 10.1039/d4nr03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Owing to their unique optical properties and atomically precise structures, metal nanoclusters (MNCs) constitute a new generation of optical probe materials. This mini-review provides a brief overview of luminescence mechanisms and modulation methods of luminescent metal nanoclusters in recent years. Based on these photophysical phenomena, the applications of cluster-based optical probes in optical bioimaging and related sensing, disease diagnosis, and treatment are summarized. Some challenges are also listed at the end.
Collapse
Affiliation(s)
- Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Sheng-Yan Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
22
|
Nguyen-Ha BN, Tam NM, Pham-Ho MP, Nguyen MT. Boron-doped scandium clusters B@Sc n-1 -/0/+ with n = 2-13: uncovering the smallest endohedrally doped cages. RSC Adv 2024; 14:34718-34732. [PMID: 39479487 PMCID: PMC11522958 DOI: 10.1039/d4ra06541g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
A comprehensive study using density functional theory with the PBE functional and the Def2-TZVP basis set investigates the pure Sc n +/0/- and doped Sc n-1B+/0/- clusters with n = 1-13 in three charged states. B@Sc6 +/0/- clusters emerge as the smallest doped cages identified so far, distinguished by their near-perfect octahedral geometry, with a B atom centrally enclosed in the Sc6 +/0/- cages. Structural analysis reveals size-dependent trends, with a critical size at n = 6, marking a transition from exohedral to endohedral configuration, and a shift in the substitution-addition pattern of the B atom within the pure Sc host. Incorporation of a B atom induces electron redistribution, stabilizes high spin states and reduces energetic degeneracy. B-doping enhances the stability of the initial Sc n +/0/- clusters, showing a consistent preference for cationic isomers. A molecular orbital (MO) analysis provides a detailed explanation for the observed energy degeneracy among various stable spin states by delving into their electronic configurations.
Collapse
Affiliation(s)
- Bao-Ngan Nguyen-Ha
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet 225 Nguyen Thong Phan Thiet City Binh Thuan Vietnam
| | - My Phuong Pham-Ho
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| |
Collapse
|
23
|
Kamachi M, Yonesato K, Okazaki T, Yanai D, Kikkawa S, Yamazoe S, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Synthesis of a Gold-Silver Alloy Nanocluster within a Ring-Shaped Polyoxometalate and Its Photocatalytic Property. Angew Chem Int Ed Engl 2024; 63:e202408358. [PMID: 38984565 DOI: 10.1002/anie.202408358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.
Collapse
Affiliation(s)
- Minori Kamachi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazaki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
24
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
25
|
Sun J, Wu Q, Yan X, Li L, Tang X, Gong X, Yan B, Xu Q, Guo Q, He J, Shen H. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS AU 2024; 4:3427-3435. [PMID: 39328750 PMCID: PMC11423317 DOI: 10.1021/jacsau.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu42(PPh3)8(RS)4(CF3COO)10(CH3O)4H10 (Cu42; PPh3 is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu42 comprises two Cu25 units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Lei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
26
|
Zhu X, Zhu P, Cong X, Ma G, Tang Q, Wang L, Tang Z. Atomically precise alkynyl-protected Ag 19Cu 2 nanoclusters: synthesis, structure analysis, and electrocatalytic CO 2 reduction application. NANOSCALE 2024; 16:16952-16957. [PMID: 39207260 DOI: 10.1039/d4nr02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report the synthesis, structure analysis, and electrocatalytic CO2 reduction application of Ag19Cu2(CCArF)12(PPh3)6Cl6 (abbreviated as Ag19Cu2, CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters. Ag19Cu2 has characteristic absorbance features and is a superatomic cluster with 2 free valence electrons. Single-crystal X-ray diffraction (SC-XRD) revealed that the metal core of Ag19Cu2 is composed of an Ag11Cu2 icosahedron connected by two Ag4 tetrahedra at the two terminals of the Cu-Ag-Cu axis. Notably, Ag19Cu2 exhibited excellent catalytic performance in the electrochemical CO2 reduction reaction (eCO2RR), manifested by a high CO faradaic efficiency of 95.26% and a large CO current density of 257.2 mA cm-2 at -1.3 V. In addition. Ag19Cu2 showed robust long-term stability, with no significant drop in current density and FECO after 14 h of continuous operation. Density functional theory (DFT) calculations disclosed that the high selectivity of Ag19Cu2 for CO in the eCO2RR process is due to the shedding of the -CCArF ligand from the Ag atom at the very center of the Ag4 unit, exposing the active site. This study enriches the potpourri of alkynyl-protected bimetallic nanoclusters and also highlights the great advantages of using atomically precise metal nanoclusters to probe the atomic-level structure-performance relationship in the catalytic field.
Collapse
Affiliation(s)
- Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pan Zhu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Guanyu Ma
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Qing Tang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150001, China
| |
Collapse
|
27
|
Tan Y, Li K, Xu J, Li Q, Yang S, Chai J, Pei Y, Jia D, Zhu M. A single-gold-atom addition regulates sharp redshift in the fluorescence of atomically precise nanoclusters. NANOSCALE 2024; 16:15663-15669. [PMID: 39058368 DOI: 10.1039/d4nr01963f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The manipulation of emission peaks at the atomic level and the investigation of the fluorescent origin mechanism are important issues. In this study, a phosphine-mediated modification method was employed on Au36(TBBT)24 nanocluster to produce a new gold nanocluster Au37(TBBT)21(TPP)2. The structural comparison revealed that Au37(TBBT)21(TPP)2 has a structural framework similar to that of Au36(TBBT)24 except for the reconstruction of its surface motifs, the addition of one gold atom into the kernel, and local structural distortion. Interestingly, compared with Au36(TBBT)24, the emission peak of Au37(TBBT)21(TPP)2 is red-shifted into the NIR-II windows (972 nm vs. 1152 nm in CDCl3) with a quantum yield of 1.5%. Furthermore, the origin of the NIR-II fluorescence in Au37(TBBT)21(TPP)2 and the red-shift mechanism of the emission peak were explored by combining the crystal structure and DFT calculations. The results reveal that the insertion of the 37th gold atom into the core can increase the contribution of the gold atoms to the HOMO orbitals and change the origin of their fluorescence from local excitation (LE) to inter fragment charge transfer (IFCT).
Collapse
Affiliation(s)
- Yesen Tan
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Jingjing Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
28
|
Rival JV, Nonappa, Shibu ES. The interplay of chromophore-spacer length in light-induced gold nanocluster self-assembly. NANOSCALE 2024; 16:14302-14309. [PMID: 39011753 DOI: 10.1039/d4nr01954g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The light-induced self-assembly of chromophore-tethered precision nanoclusters (NCs) has recently received significant attention due to their facile control over structure, function, and reversibility under ambient conditions. However, the magnitude of assembly depends on the photoswitching efficiency, chemical structure, and proximity of the chromophore to the NC surface. Herein, using azobenzene alkyl monothiol (AMT)-capped gold NCs with two different spacer lengths (denoted as C3-NC and C9-NC), we show that reversible cis ↔ trans isomerization efficiency can be readily tuned to control the self-assembly kinetics of NCs. Irrespective of the chain length, the time required for trans-to-cis (140 s) and cis-to-trans (260 s) isomerization of individual C3-AMT and C9-AMT is identical in dichloromethane solution. When a similar experiment was performed using a solution of C3-NCs and C9-NCs, it resulted in self-assembled disc-like superstructures. Notably, the trans-to-cis photoswitching in C3-NC could reach only 65% even after 460 seconds of irradiation. On the other hand, C9-NC completed this process within 160 seconds of irradiation. The low photoswitching efficiency of the C3-NC analog is due to the short and rigid spacer length of C3-AMT ligands, which are in close proximity to the NC surface, resulting in steric hindrance experienced at the NC-chromophore interface. Importantly, the slow photoswitching in C3-NCs helps isolate and investigate the intermediates of assembly. Using high-resolution electron microscopy, atomic force microscopy, and 3D reconstruction, we show that the discs are made up of densely packed arrays of NCs. The prolonged illumination of C9-NCs results in a chain-like assembly due to the dipolar attraction between the previously assembled superstructures. The efficient photoisomerization of chromophores located away from the nanocluster surface has been identified as the key element to speed up the light-induced assembly in chromophore-tethered nanoclusters. Such information will be useful while developing nanoscale photoswitches for electrochemistry, biosensors, and electronic devices.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut, Thenhipalam 673635, Kerala, India.
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | | |
Collapse
|
29
|
Kumar P, Khirid S, Jangid DK, Nishad CS, Chauhan P, Kumari P, Meena S, Bose SK, Kumar A, Banerjee B, Dhayal RS. Dithiophosphonate-Protected Eight-Electron Superatomic Ag 21 Nanocluster: Synthesis, Isomerism, Luminescence, and Catalytic Activity. Inorg Chem 2024; 63:13724-13737. [PMID: 38970493 DOI: 10.1021/acs.inorgchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The structure-property relationship considering isomerism-tuned photoluminescence and efficient catalytic activity of silver nanoclusters (NCs) is exclusive. Asymmetrical dithiophosphonate NH4[S2P(OR)(p-C6H4OCH3)] ligated first atomically precise silver NCs [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 {where, R = nPr (1), Et (2)} were established by single-crystal X-ray diffraction and characterized by electrospray ionization mass spectrometry, NMR (31P, 1H, 2H), X-ray photoelectron spectroscopy, UV-visible, energy-dispersive X-ray spectroscopy, Fourier transforms infrared, thermogravimetric analysis, etc. NCs 1 and 2 consist of eight silver atoms in a cubic framework and enclose an Ag@Ag12-centered icosahedron to constitute an Ag21 core of Th symmetry, which is concentrically inscribed within the S24 snub-cube, P12 cuboctahedron, and the O12 truncated tetrahedron formed by 12 dithiophosphonate ligands. These NCs facilitate to be an eight-electron superatom (1S21P6), in which eight capping Ag atoms exhibit structural isomerism with documented isoelectronic [Ag21{S2P(OiPr)2}12]PF6, 3. In contrast to 3, the stapling of dithiophosphonates in 1 and 2 triggered bluish emission within the 400 to 500 nm region at room temperature. The density functional theory study rationalized isomerization and optical properties of 1, 2, and 3. Both (1, and 2) clusters catalyzed a decarboxylative acylarylation reaction for rapid oxindole synthesis in 99% yield under ambient conditions and proposed a multistep reaction pathway. Ultimately, this study links nanostructures to their physical and catalytic properties.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Samreet Khirid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Dilip Kumar Jangid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | | | - Poonam Chauhan
- Department of Physics, Central University of Punjab, Bathinda 151401, India
| | - Priti Kumari
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Sangeeta Meena
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain (Deemed-to-be-University), Jain Global Campus, Bangalore 562112, India
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rajendra S Dhayal
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
30
|
Alamer B, Sagadevan A, Bodiuzzaman M, Murugesan K, Alsharif S, Huang RW, Ghosh A, Naveen MH, Dong C, Nematulloev S, Yin J, Shkurenko A, Abulikemu M, Dong X, Han Y, Eddaoudi M, Rueping M, Bakr OM. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C-C Multiple Bond. J Am Chem Soc 2024; 146:16295-16305. [PMID: 38816788 PMCID: PMC11177319 DOI: 10.1021/jacs.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.
Collapse
Affiliation(s)
- Badriah Alamer
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohammad Bodiuzzaman
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Kathiravan Murugesan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Salman Alsharif
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Ren-Wu Huang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Green
Catalysis Center, College of Chemistry, Henan International Joint
Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Atanu Ghosh
- Institute
for Organic and Bimolecular Chemistry, Georg-August-University
Goettingen Tammannstr, 237077 Goettingen, Germany
| | - Malenahalli H. Naveen
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Chunwei Dong
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Saidkhodzha Nematulloev
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, 999077 Hong Kong, P. R. China
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mutalifu Abulikemu
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Xinglong Dong
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yu Han
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
31
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
32
|
Su J, Liu Z, Tan Y, Xiao Y, Zhan N, Ding Y. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions. Molecules 2024; 29:2724. [PMID: 38930789 PMCID: PMC11205606 DOI: 10.3390/molecules29122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) plays a pivotal role in the synthesis of renewable, biodegradable plastics and sustainable chemicals. Although supported gold nanoclusters (NCs) exhibit significant potential in this process, they often suffer from low selectivity. To address this challenge, a series of gold-M (M means Ni, Fe, Cu, and Pd) bimetallic NCs catalysts were designed and synthesized to facilitate the selective oxidation of HMF to FDCA. Our findings indicate that the introduction of doped metals, particularly Ni and Pd, not only improves the reaction rates for HMF tandem oxidation but also promotes high yields of FDCA. Various characterizations techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption (CO-DRIFTS), and temperature-programmed desorption of oxygen (O2-TPD), were employed to scrutinize the structural and electronic properties of the prepared catalysts. Notably, an electronic effect was observed across the Au-based bimetallic catalysts, facilitating the activation of reactant molecules and enhancing the catalytic performance. This study provides valuable insights into the alloy effects, aiding in the development of highly efficient Au-based bimetallic catalysts for biomass conversions.
Collapse
Affiliation(s)
- Juan Su
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Zongyang Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Nannan Zhan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
33
|
Li S, Liu Y, Tang X, Xu Z, Lin L, Xie Z, Huo R, Nan ZA, Guan ZJ, Shen H, Zheng N. Chiroptical Activity Amplification of Chiral Metal Nanoclusters via Surface/Interface Solidification. ACS NANO 2024; 18:13675-13682. [PMID: 38752561 DOI: 10.1021/acsnano.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It remains a grand challenge to amplify the chiroptical activity of chiral metal nanoclusters (NCs) although it is desirable for fundamental research and practical application. Herein, we report a strategy of surface/interface solidification (SIS) for enhancing the chiroptical activity of gold NCs. Structural analysis of [Au19(2R,4R/2S,4S-BDPP)6Cl2]3+ (BDPP is 2,4-bis(diphenylphosphino)pentane) clusters reveals that one of the interfacial gold atoms is flexible between two sites and large space is present on the surface, thus hampering chirality transfer from surface chiral ligands to metal core and leading to low chiroptical activity. Following SIS by filling the flexible sites and replacing chlorides with thiolate ligands affords another pair of [Au20(2R,4R/2S,4S-BDPP)6(4-F-C6H4S)2]4+, which shows a more compact and organized structure and thus an almost 40-fold enhancement of chiroptical activity. This work not only provides an efficient approach for amplifying the chiroptical activity of metal nanoclusters but also highlights the significance of achiral components in shaping chiral nanostructures.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Ying Liu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lushan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhenlang Xie
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong Huo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zi-Ang Nan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
34
|
Niihori Y, Kosaka T, Negishi Y. Triplet-triplet annihilation-based photon upconversion using nanoparticles and nanoclusters. MATERIALS HORIZONS 2024; 11:2304-2322. [PMID: 38587491 DOI: 10.1039/d4mh00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The phenomenon of photon upconversion (UC), generating high-energy photons from low-energy photons, has attracted significant attention. In particular, triplet-triplet annihilation-based UC (TTA-UC) has been achieved by combining the excitation states of two types of molecules, called the sensitizer and emitter (or annihilator). With TTA-UC, it is possible to convert weak, incoherent near-infrared (NIR) light, which constitutes half of the solar radiation intensity, into ultraviolet and visible light that are suitable for the operation of light-responsive functional materials or devices such as solar cells and photocatalysts. Research on TTA-UC is being conducted worldwide, often employing materials with high intersystem crossing rates, such as metal porphyrins, as sensitizers. This review summarizes recent research and trends in triplet energy transfer and TTA-UC for semiconductor nanoparticles or nanocrystals with diameters in the nanometer range, also known as quantum dots, and for ligand-protected metal nanoclusters, which have even smaller well-defined sub-nanostructures. Concerning nanoparticles, transmitter ligands have been applied on the surface of the nanoparticles to efficiently transfer triplet excitons formed inside the nanoparticles to emitters. Applications are expanding to solid-state UC devices that convert NIR light to visible light. Additionally, there is active research in the development of sensitizers using more cost-effective and environmentally friendly elements. Regarding metal nanoclusters, methods have been established for the evaluation of excited states, deepening the understanding of luminescent properties and excited relaxation processes.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taiga Kosaka
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
35
|
Ghosh A, Sagadevan A, Murugesan K, Nastase SAF, Maity B, Bodiuzzaman M, Shkurenko A, Hedhili MN, Yin J, Mohammed OF, Eddaoudi M, Cavallo L, Rueping M, Bakr OM. Multiple neighboring active sites of an atomically precise copper nanocluster catalyst for efficient bond-forming reactions. MATERIALS HORIZONS 2024; 11:2494-2505. [PMID: 38477151 DOI: 10.1039/d4mh00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.
Collapse
Affiliation(s)
- Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohammad Bodiuzzaman
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Aleksander Shkurenko
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
36
|
Liu H, Wang P, Pei Y. Mechanism Insight into Metal Exchange between Au 25(SR) 18-/Ag 25(SR) 18- Clusters and Metal Ions from Ab Initio Molecular Dynamics Simulations. Inorg Chem 2024; 63:8625-8635. [PMID: 38684116 DOI: 10.1021/acs.inorgchem.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The metal exchange reaction has emerged as an efficient method to synthesize ligand-protected alloy nanoclusters with precise compositions and structure. However, the understanding of the mechanism of these metal exchange processes is quite limited. Herein, the dynamic process of metal exchange of Au25(SR)18- and Ag25(SR)18- (R = CH3) nanoclusters with metal ions (Au+, Ag+, Cu2+, Cu+, Cd2+, and Hg2+) is investigated using ab initio molecular dynamics simulations. Computational results unveiled a multifaceted nature of the metal exchange process, dictated by several variables, including thermodynamic stability, electrochemical activity, metal affinity to ligand, and the coordination mode of metal ions. As a result of these factors, metal ions may either directly exchange with Au or Ag atoms on the icosahedral core surface by a "knock-off" mechanism or be stably adsorbed at the core-motif interface of Au25(SR)18- and Ag25(SR)18- nanoclusters. Meanwhile, we also discovered that counterions can promote adsorbed Ag and Cu atoms to diffuse into the gold core. Finally, the driving force of the galvanic reduction and antigalvanic reduction reactions is discussed. The formation of a more stable core-doping product nanocluster is the major driving force of metal exchange reactions.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan, Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan, Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan, Province 411105, China
| |
Collapse
|
37
|
Fang JJ, Liu Z, Wang ZY, Xie YP, Lu X. Chiral Canoe-Like Pd 0 or Pt 0 Alloyed Copper Alkynyl Nanoclusters Display Near-Infrared Luminescence. Angew Chem Int Ed Engl 2024; 63:e202401206. [PMID: 38469979 DOI: 10.1002/anie.202401206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Alloying nanoclusters (NCs) has emerged as a widely explored and versatile strategy for tailoring tunable properties, facilitating in-depth atomic-level investigations of structure-property correlations. In this study, we have successfully synthesized six atomically precise copper NCs alloyed with Group 10 metals (Pd or Pt). Notably, the Pd0 or Pt0 atom situated at the center of the distorted hexagonal antiprism Pd0/Pt0@Cu12 cage, coordinated with twelve Cu+ and two tBuC≡C- ligands. Moreover, ligand exchange strategies demonstrated the potential for Cl- and Br- to replace one or two alkynyl ligands positioned at the top or side of the NCs. The chirality exhibited by these racemic NCs is primarily attributed to the involvement of halogens and a chiral (Pd/Pt)@Cu18 skeleton. Furthermore, all the NCs exhibit near-infrared (NIR) luminescence, characterized by emission peaks at 705-755 nm, lifetimes ranging from 6.630 to 9.662 μs, and absolute photoluminescence quantum yields (PLQYs) of 1.75 %-2.52 % in their crystalline state. The experimental optical properties of these NCs are found to be in excellent agreement with the results of theoretical calculations. These alloy NCs not only offer valuable insights into the synthesis of Pd0/Pt0-Cu alloy NCs, but also bridge the gap in understanding the structure-luminescence relationships of Pd0/Pt0-Cu molecules.
Collapse
Affiliation(s)
- Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
38
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
39
|
Piotrowski MJ, Palheta JMT, Fournier R. Cage doping of Ti, Zr, and Hf-based 13-atom nanoclusters: two sides of the same coin. Phys Chem Chem Phys 2024; 26:13172-13181. [PMID: 38630106 DOI: 10.1039/d4cp00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition metal nanoclusters can exhibit unique and tunable properties which result not only from their chemical composition but also from their atomic packing and quantized electronic structures. Here, we introduce a promising family of bimetallic TM@Ti12, TM@Zr12, and TM@Hf12 nanoclusters with icosahedral geometry, where TM represents an atom from groups 3 to 12. Density functional theory calculations show that their stability can be explained with familiar concepts of metal cluster electronic and atomic shell structures. The magnetic properties of these quasispherical clusters are entirely consistent with superatom electronic shells and Hund's rules, and can be tuned by the choice of the TM dopant. The computed cluster atomization energies were analyzed in terms of the elements' cohesive energy, Ecoh, and contributions from geometric distortion, Edis, surface energy, Es, and ionic bonding, Ei. Some clusters have anomalous stability relative to Ecoh + Edis + Es + Ei. We attribute this to superatomic character associated with a favorable atomic and electronic shell structure. This raises the possibility of designing stable superatoms and materials with tailored electronic and magnetic properties.
Collapse
Affiliation(s)
- Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - João Marcos T Palheta
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - René Fournier
- Department of Chemistry, York University, Toronto, ON, Canada M3J 1P3.
| |
Collapse
|
40
|
Terlecki M, Kornowicz A, Sacharczuk K, Justyniak I, Lewiński J. Synthesis, polymorphism, and shape complementarity-induced co-crystallization of hexanuclear Co(II) clusters capped by a flexible heteroligand shell. Dalton Trans 2024; 53:7012-7022. [PMID: 38563241 DOI: 10.1039/d4dt00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymorphism and co-crystallization have gradually gained attention as new tools in the development of modern crystalline functional materials. However, the study on the selective self-assembly of metal clusters into multicomponent crystals is still in its infancy. Herein, we present the synthesis and characterization of two new heteroleptic hydroxido-acetato and acetato Co(II) clusters [Co6(OH)2(OAc)4(pyret)6] (1) and [Co6(OAc)6(pyret)6] (2) incorporating auxiliary 2-pyrrolidinoethoxylate (pyret) ligands. On this occasion, we revealed that the commonly used thermal procedure for dehydration of cobalt(II) acetate leads to a reagent comprising substantial contamination by cobalt hydroxido moieties. Comprehensive structural analysis of new compounds demonstrated intriguing crystal structure diversity of hydroxido-acetato cluster 1, which represents a rare example of both conformational and packing polymorphism in one compound, originating from the flexibility of organic O,N-ligands in the secondary coordination sphere. Furthermore, both clusters exhibit an interesting propensity for the selective formation of co-crystals 1·2 driven mainly by van der Waals forces and specific shape complementarity between co-formers.
Collapse
Affiliation(s)
- Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kornel Sacharczuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
41
|
Zhang Y, Zhang W, Zhang TS, Ge C, Tao Y, Fei W, Fan W, Zhou M, Li MB. Site-Recognition-Induced Structural and Photoluminescent Evolution of the Gold-Pincer Nanocluster. J Am Chem Soc 2024; 146:9631-9639. [PMID: 38530981 DOI: 10.1021/jacs.3c12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The induced structural transformation provides an efficient way to precisely modulate the fine structures and the corresponding performance of gold nanoclusters, thus constituting one of the important research topics in cluster chemistry. However, the driving forces and mechanisms of these processes are still ambiguous in many cases, limiting further applications. In this work, based on the unique coordination mode of the pincer ligand-stabilized gold nanocluster Au8(PNP)4, we revealed the site-recognition mechanism for induced transformations of gold nanoclusters. The "open nitrogen sites" on the surface of the nanocluster interact with different inducers including organic compounds and metals and trigger the conversion of Au8(PNP)4 to Au13 and Au9Ag4 nanoclusters, respectively. Control experiments verified the site-recognition mechanism, and the femtosecond and nanosecond transient absorption spectroscopy revealed the electronic and photoluminescent evolution accompanied by the structural transformation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wei Zhang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tai-Song Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chao Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weigang Fan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Meng Zhou
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Man-Bo Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
42
|
You Q, Wang H, Zhao Y, Fan W, Gu W, Jiang HL, Wu Z. Bottom-Up Construction of Metal-Organic Framework Loricae on Metal Nanoclusters with Consecutive Single Nonmetal Atom Tuning for Tailored Catalysis. J Am Chem Soc 2024; 146:9026-9035. [PMID: 38441064 DOI: 10.1021/jacs.3c13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
43
|
Masuda S, Sakamoto K, Tsukuda T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. NANOSCALE 2024; 16:4514-4528. [PMID: 38294320 DOI: 10.1039/d3nr05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gold and silver nanoclusters (NCs) composed of <200 atoms are novel catalysts because their catalytic properties differ significantly from those of the corresponding bulk surface and can be dramatically tuned by the size (number of atoms). Doping with other metals is a promising approach for improving the catalytic performance of Au and Ag NCs. However, elucidation of the origin of the doping effects and optimization of the catalytic performance are hampered by the technical challenge of controlling the number and location of the dopants. In this regard, atomically precise Au or Ag (Au/Ag) NCs protected by ligands or polymers have recently emerged as an ideal platform because they allow regioselective substitution of single Au/Ag constituent atoms while retaining the size and morphology of the NC. Heterogeneous Au/Ag NC catalysts doped with a single atom can also be prepared by controlled calcination of ligand-protected NCs on solid supports. Comparison of thermal catalysis, electrocatalysis, and photocatalysis between the single-atom-doped and undoped Au/Ag NCs has revealed that the single-atom doping effect can be attributed to an electronic or geometric origin, depending on the dopant element and position. This minireview summarizes the recent progress of the synthesis and catalytic application of single-atom-doped, atomically precise Au/Ag NC catalysts and provides future prospects for the rational development of active and selective metal NC catalysts.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
44
|
Wang YM, Yan FQ, Wang QY, Du CX, Wang LY, Li B, Wang S, Zang SQ. Single-atom tailored atomically-precise nanoclusters for enhanced electrochemical reduction of CO 2-to-CO activity. Nat Commun 2024; 15:1843. [PMID: 38418496 PMCID: PMC10901820 DOI: 10.1038/s41467-024-46098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
The development of facile tailoring approach to adjust the intrinsic activity and stability of atomically-precise metal nanoclusters catalysts is of great interest but remians challenging. Herein, the well-defined Au8 nanoclusters modified by single-atom sites are rationally synthesized via a co-eletropolymerization strategy, in which uniformly dispersed metal nanocluster and single-atom co-entrenched on the poly-carbazole matrix. Systematic characterization and theoretical modeling reveal that functionalizing single-atoms enable altering the electronic structures of Au8 clusters, which amplifies their electrocatalytic reduction of CO2 to CO activity by ~18.07 fold compared to isolated Au8 metal clusters. The rearrangements of the electronic structure not only strengthen the adsorption of the key intermediates *COOH, but also establish a favorable reaction pathway for the CO2 reduction reaction. Moreover, this strategy fixing nanoclusters and single-atoms on cross-linked polymer networks efficiently deduce the performance deactivation caused by agglomeration during the catalytic process. This work contribute to explore the intrinsic activity and stability improvement of metal clusters.
Collapse
Affiliation(s)
- Yi-Man Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang-Qin Yan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
45
|
Zheng X, Liu Y, Ma W, Su Y, Wang Y. The structure-activity relationship of copper hydride nanoclusters in hydrogenation and reduction reactions. NANOSCALE ADVANCES 2024; 6:1374-1379. [PMID: 38419875 PMCID: PMC10898441 DOI: 10.1039/d3na01145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Copper hydrides are highly active catalysts in hydrogenation reactions and reduction processes. Three Stryker-type copper hydride nanoclusters (NCs), [(TPP)CuH]6, [(TCP)CuH]6 and [(TOP)CuH]6 (TPP = triphenylphosphine, TCP = tricyclohexylphosphine and TOP = tri-n-octylphosphine), were synthesized in this study. Due to variations in the electron-donating properties of the phosphine ligands, the UV-visible absorption spectra of the three NCs exhibited notable distinctions. The influence of the phosphine ligands on the effectiveness of the NCs as hydride sources in hydrogenation processes, as well as on the applicability as homogeneous catalysts for reduction reactions, was systematically studied. Due to the highest electron-donating properties of the TOP ligand, [(TOP)CuH]6 was found to exhibit superior performance in both hydrogenation reactions and catalytic reduction reactions. Moreover, these hydrophobic NCs worked well as heterogeneous catalysts in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Chemistry, Humboldt-Universität zu Berlin 12489 Berlin Germany
- IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Ye Liu
- Department of Chemistry, Humboldt-Universität zu Berlin 12489 Berlin Germany
- IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Wanli Ma
- Department of Chemistry, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology 116024 Dalian China
| | - Yu Wang
- Department of Chemistry, Humboldt-Universität zu Berlin 12489 Berlin Germany
- IRIS Adlershof & The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
46
|
Zhang C, Guan S, Li HY, Dong XY, Zang SQ. Metal Clusters Confined in Chiral Zeolitic Imidazolate Framework for Circularly Polarized-Luminescence Inks. NANO LETTERS 2024; 24:2048-2056. [PMID: 38166154 DOI: 10.1021/acs.nanolett.3c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
Collapse
Affiliation(s)
- Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Yang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Bose P, Kumaranchira Ramankutty K, Chakraborty P, Khatun E, Pradeep T. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. NANOSCALE 2024; 16:1446-1470. [PMID: 38032061 DOI: 10.1039/d3nr05128e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Krishnadas Kumaranchira Ramankutty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Esma Khatun
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
48
|
You Q, Jiang XL, Fan W, Cui YS, Zhao Y, Zhuang S, Gu W, Liao L, Xu CQ, Li J, Wu Z. Pd 8 Nanocluster with Nonmetal-to-Metal- Ring Coordination and Promising Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313491. [PMID: 37990769 DOI: 10.1002/anie.202313491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Constructing ambient-stable, single-atom-layered metal-based materials with atomic precision and understanding their underlying stability mechanisms are challenging. Here, stable single-atom-layered nanoclusters of Pd were synthesized and precisely characterized through electrospray ionization mass spectrometry and single-crystal X-ray crystallography. A pseudo-pentalene-like Pd8 unit was found in the nanocluster, interacting with two syn PPh units through nonmetal-to-metal -ring coordination. The unexpected coordination, which is distinctly different from the typical organoring-to-metal coordination in half-sandwich-type organometallic compounds, contributes to the ambient stability of the as-obtained single-atom-layered nanocluster as revealed through theoretical and experimental analyses. Furthermore, quantum chemical calculations revealed dominant electron transition along the horizontal x-direction of the Pd8 plane, indicating high photothermal conversion efficiency (PCE) of the nanocluster, which was verified by the experimental PCE of 73.3 %. Therefore, this study unveils the birth of a novel type of compound and the finding of the unusual nonmetal-to-metal -ring coordination and has important implications for future syntheses, structures, properties, and structure-property correlations of single-atom-layered metal-based materials.
Collapse
Grants
- 21925303, 21829501, 22033005, 21905284, 22038002, 22103035, 21771186, 21222301, 22075291, 21171170 and 21528303 National Natural Science Foundation of China
- 2022YFA1503900, 2022YFA1503000 National Key Research and Development Project
- 2020B121201002 Guangdong Provincial Key Laboratory of Catalysis
- BJPY2019A02 CASHIPS Director's Fund
- 2020HSC-CIP005, 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- YZJJ202306-TS and YZJJ-GGZX-2022-01 Foundation of President of HFIPS
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Yun-Shu Cui
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| |
Collapse
|
49
|
Wei X, Li H, Shen H, Zhou C, Wang S, Kang X, Zhu M. Symmetry breaking of highly symmetrical nanoclusters for triggering highly optical activity. FUNDAMENTAL RESEARCH 2024; 4:63-68. [PMID: 38933845 PMCID: PMC11197546 DOI: 10.1016/j.fmre.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
Developing new approaches to fulfill the enantioseparation of nanocluster racemates and construct cluster-based nanomaterials with optical activity remains highly desired in cluster science, because it is an essential prerequisite for fundamental research and extensive applications of these nanomaterials. We herein propose a strategy termed "active-site exposing and partly re-protecting" to trigger the symmetry breaking of highly symmetrical nanoclusters and to render cluster crystals optically active. The vertex PPh3 of the symmetrical Ag29(SSR)12(PPh3)4 (SSR = 1, 3-benzenedithiol) nanocluster was firstly dissociated in the presence of counterions with large steric hindrance, and then the exposed Ag active sites of the obtained Ag29(SSR)12 nanocluster were partly re-protected by Ag+, yielding an Ag29(SSR)12-Ag2 nanocluster with a symmetry-breaking construction. Ag29(SSR)12-Ag2 followed a chiral crystallization mode, and its crystal displayed strong optical activity, derived from CD and CPL characterizations. Overall, this work presents a new approach (i.e., active-site exposing and partly re-protecting) for the symmetry breaking of highly symmetrical nanoclusters, the enantioseparation of nanocluster racemates, and the achievement of highly optical activity.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| |
Collapse
|
50
|
Chakraborty P, Malola S, Weis P, Neumaier M, Schneider EK, Häkkinen H, Kappes MM. Tailoring Vacancy Defects in Isolated Atomically Precise Silver Clusters through Mercury-Doped Intermediates. J Phys Chem Lett 2023; 14:11659-11664. [PMID: 38109267 DOI: 10.1021/acs.jpclett.3c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Vacancy defects are known to have significant effects on the physical and chemical properties of nanomaterials. However, the formation and structural dynamics of vacancy defects in atomically precise coinage metal clusters have hardly been explored due to the challenges associated with isolation of such defected clusters. Herein, we isolate [Ag28(BDT)12]2- (BDT is 1,3-benzenedithiol), a cluster with a "missing atom" site compared to [Ag29(BDT)12]3-, whose precise structure is known from X-ray diffraction. [Ag28(BDT)12]2- was formed in the gas-phase by collisional heating of [Ag28Hg(BDT)12]2-, a Hg-doped analogue of the parent cluster. The structural changes resulting from the loss of the Hg heteroatom were investigated by trapped ion mobility mass spectrometry. Density functional theory calculations were performed to provide further insights into the defect structures, and molecular dynamics simulations revealed defect site-dependent structural relaxation processes.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erik Karsten Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|