1
|
Ury-Thiery V, Fichou Y, Alves I, Molinari M, Lecomte S, Feuillie C. Interaction of full-length Tau with negatively charged lipid membranes leads to polymorphic aggregates. NANOSCALE 2024; 16:17141-17153. [PMID: 39189914 DOI: 10.1039/d4nr01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Tau protein is implicated in various diseases collectively known as tauopathies, including Alzheimer's disease and frontotemporal dementia. The precise mechanism underlying Tau pathogenicity remains elusive. Recently, the role of lipids has garnered interest due to their implications in Tau aggregation, secretion, uptake, and pathogenic dysregulation. Previous investigations have highlighted critical aspects: (i) Tau's tendency to aggregate into fibers when interacting with negatively charged lipids, (ii) its ability to form structured species upon contact with anionic membranes, and (iii) the potential disruption of the membrane upon Tau binding. In this study, we examine the disease-associated P301L mutation of the 2N4R isoform of Tau and its effects on membranes composed on phosphatidylserine (PS) lipids. Aggregation studies and liposome leakage assays demonstrate Tau's ability to bind to anionic lipid vesicles, leading to membrane disruption. Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) reveals the accumulation of Tau on the membrane surface without protein insertion, structuration, or lipid removal. Plasmon waveguide resonance (PWR) demonstrates a strong binding of Tau on PS bilayers with an apparent Kd in the micromolar range, indicating the deposition of a thick protein layer. Atomic force microscopy (AFM) real-time imaging allows the observation of partial lipid solubilization and the deposition of polymorphic aggregates in the form of thick patches and fibrillary structures resembling amyloid fibers, which could grow from a combination of extracted anionic phospholipids from the membrane and Tau protein. This study deepens our understanding of full-length Tau's multifaceted interactions with lipids, shedding light on potential mechanisms leading to the formation of pathogenic Tau assemblies.
Collapse
Affiliation(s)
- Vicky Ury-Thiery
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Yann Fichou
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Isabel Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
2
|
Jobin ML, De Smedt-Peyrusse V, Ducrocq F, Baccouch R, Oummadi A, Pedersen MH, Medel-Lacruz B, Angelo MF, Villette S, Van Delft P, Fouillen L, Mongrand S, Selent J, Tolentino-Cortez T, Barreda-Gómez G, Grégoire S, Masson E, Durroux T, Javitch JA, Guixà-González R, Alves ID, Trifilieff P. Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling. Mol Psychiatry 2023; 28:1960-1969. [PMID: 36604603 DOI: 10.1038/s41380-022-01928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of β-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.
Collapse
Affiliation(s)
- Marie-Lise Jobin
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Rim Baccouch
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Maria Hauge Pedersen
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Sandrine Villette
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Pierre Van Delft
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Gabriel Barreda-Gómez
- Research Department, IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160, Derio, Spain
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), 5232, Villigen, PSI, Switzerland.
| | - Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France.
| | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
3
|
Structural Basis of the Interaction of the G Proteins, Gαi 1, Gβ 1γ 2 and Gαi 1β 1γ 2, with Membrane Microdomains and Their Relationship to Cell Localization and Activity. Biomedicines 2023; 11:biomedicines11020557. [PMID: 36831093 PMCID: PMC9953545 DOI: 10.3390/biomedicines11020557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
GPCRs receive signals from diverse messengers and activate G proteins that regulate downstream signaling effectors. Efficient signaling is achieved through the organization of these proteins in membranes. Thus, protein-lipid interactions play a critical role in bringing G proteins together in specific membrane microdomains with signaling partners. Significantly, the molecular basis underlying the membrane distribution of each G protein isoform, fundamental to fully understanding subsequent cell signaling, remains largely unclear. We used model membranes with lipid composition resembling different membrane microdomains, and monomeric, dimeric and trimeric Gi proteins with or without single and multiple mutations to investigate the structural bases of G protein-membrane interactions. We demonstrated that cationic amino acids in the N-terminal region of the Gαi1 and C-terminal region of the Gγ2 subunit, as well as their myristoyl, palmitoyl and geranylgeranyl moieties, define the differential G protein form interactions with membranes containing different lipid classes (PC, PS, PE, SM, Cho) and the various microdomains they may form (Lo, Ld, PC bilayer, charged, etc.). These new findings in part explain the molecular basis underlying amphitropic protein translocation to membranes and localization to different membrane microdomains and the role of these interactions in cell signal propagation, pathophysiology and therapies targeted to lipid membranes.
Collapse
|
4
|
Rascol E, Villette S, Harté E, Alves ID. Plasmon Waveguide Resonance: Principles, Applications and Historical Perspectives on Instrument Development. Molecules 2021; 26:molecules26216442. [PMID: 34770851 PMCID: PMC8588475 DOI: 10.3390/molecules26216442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmon waveguide resonance (PWR) is a variant of surface plasmon resonance (SPR) that was invented about two decades ago at the University of Arizona. In addition to the characterization of the kinetics and affinity of molecular interactions, PWR possesses several advantages relative to SPR, namely, the ability to monitor both mass and structural changes. PWR allows anisotropy information to be obtained and is ideal for the investigation of molecular interactions occurring in anisotropic-oriented thin films. In this review, we will revisit main PWR applications, aiming at characterizing molecular interactions occurring (1) at lipid membranes deposited in the sensor and (2) in chemically modified sensors. Among the most widely used applications is the investigation of G-protein coupled receptor (GPCR) ligand activation and the study of the lipid environment’s impact on this process. Pioneering PWR studies on GPCRs were carried out thanks to the strong and effective collaboration between two laboratories in the University of Arizona leaded by Dr. Gordon Tollin and Dr. Victor J. Hruby. This review provides an overview of the main applications of PWR and provides a historical perspective on the development of instruments since the first prototype and continuous technological improvements to ongoing and future developments, aiming at broadening the information obtained and expanding the application portfolio.
Collapse
Affiliation(s)
- Estelle Rascol
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (E.R.); (S.V.)
| | - Sandrine Villette
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (E.R.); (S.V.)
| | - Etienne Harté
- Université de Bordeaux and CNRS, LOMA, UMR 5798, F-33400 Talence, France;
| | - Isabel D. Alves
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (E.R.); (S.V.)
- Correspondence: ; Tel.: +33-5400-06-8949
| |
Collapse
|
5
|
Soulet F, Bodineau C, Hooks KB, Descarpentrie J, Alves I, Dubreuil M, Mouchard A, Eugenie M, Hoepffner JL, López JJ, Rosado JA, Soubeyran I, Tomé M, Durán RV, Nikolski M, Villoutreix BO, Evrard S, Siegfried G, Khatib AM. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 2020; 5:129070. [PMID: 32516140 DOI: 10.1172/jci.insight.129070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.
Collapse
Affiliation(s)
- Fabienne Soulet
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Clement Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | | | - Jean Descarpentrie
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | | | - Marielle Dubreuil
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Amandine Mouchard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Malaurie Eugenie
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France
| | | | - Jose J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Mercedes Tomé
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Macha Nikolski
- LaBRI, CNRS UMR 5800, University of Bordeaux, Bordeaux, France
| | | | - Serge Evrard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Bergonié Institute, Bordeaux, France
| | - Geraldine Siegfried
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Abdel-Majid Khatib
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| |
Collapse
|
6
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2019; 287:2367-2385. [PMID: 31738467 DOI: 10.1111/febs.15145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.
Collapse
Affiliation(s)
- Pierre Calmet
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | | | - Maylou Vang
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Nada Caudy
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Rim Baccouch
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean Dessolin
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Isabel D Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
8
|
Jiang JQ, Chanseau C, Alves ID, Nlate S, Durrieu MC. Dendron-Functionalized Surface: Efficient Strategy for Enhancing the Capture of Microvesicles. iScience 2019; 21:110-123. [PMID: 31655252 PMCID: PMC6820240 DOI: 10.1016/j.isci.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Microvesicles (MVs) are used by various types of cells in the human body for intercellular communication, making them biomarkers of great potential for the early and non-evasive diagnosis of a spectrum of diseases. An integrated analysis including morphological, quantitative, and compositional studies is most desirable for the clinical application of MV detection; however, such integration is limited by the currently available analysis techniques. In this context, exploiting the phosphatidylserine (PS) exposure of MVs, we synthesized a series of dendritic molecules with PS-binding sites at the periphery. PS-dendron binding was studied at the molecular level using NMR approaches, whereas PS-containing membrane-dendron interaction was investigated in an aqueous environment using plasmon waveguide resonance spectroscopy. As a proof of concept, polyethylene terephthalate surface was functionalized with the synthetic dendrons, forming devices that can capture MVs to facilitate their subsequent analyses. Phosphatidylserine-dendron interaction studies with NMR techniques Lipid membrane binding enhancement using dendritic molecules Dendron-grafted material for effective MV capture
Collapse
Affiliation(s)
- Jian-Qiao Jiang
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Christel Chanseau
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Isabel D Alves
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Sylvain Nlate
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France.
| | - Marie-Christine Durrieu
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France.
| |
Collapse
|
9
|
Althumairy D, Murakami HA, Zhang D, Barisas BG, Roess DA, Crans DC. Effects of vanadium(IV) compounds on plasma membrane lipids lead to G protein-coupled receptor signal transduction. J Inorg Biochem 2019; 203:110873. [PMID: 31706224 DOI: 10.1016/j.jinorgbio.2019.110873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Luteinizing hormone receptors (LHR), expressed at physiological numbers <30,000 receptors per cell, translocate to and signal within membrane rafts following binding of human chorionic gonadotropin (hCG). Similarly LHR signal in cells when treated with bis(maltolato)oxovanadium(IV) (BMOV), bis(ethylmaltolato)oxovanadium(IV) (BEOV) or VOSO4, which decrease membrane lipid packing. Overexpressed LHR (>85,000 receptors per cell) are found in larger clusters in polarized homo-transfer fluorescence resonance energy transfer (homo-FRET) studies that were not affected by either hCG or vanadium compounds. Intracellular cyclic adenylate monophosphate (cAMP) levels indicate that only clustered LHR are active and produce the intracellular second messenger, cAMP. When LHR are over-expressed, cell signaling is unaffected by binding of hCG or vanadium compounds. To confirm the existence of intact complex, the EPR spectra of vanadium compounds in cell media were obtained using 1 mM BMOV, BEOV or VOSO4. These data were used to determine intact complex in a 10 μM solution and verified by speciation calculations. Effects of BMOV and BEOV samples were about two-fold greater than those of aqueous vanadium(IV) making it likely that intact vanadium complex are responsible for effects of LHR function. This represents a new mechanism for activation of a G protein-coupled receptor; perturbations in the lipid bilayer by vanadium compounds lead to aggregation and accumulation of physiological numbers of LHR in membrane raft domains where they initiate signal transduction and production of cAMP, a second messenger involved in signaling.
Collapse
Affiliation(s)
- Duaa Althumairy
- Cell and Molecular Biology Program, Colorado State University Fort Collins, CO 80523, United States of America; Department of Biological Sciences, King Faisal University, Saudi Arabia
| | - Heide A Murakami
- Department of Chemistry, Colorado State University Fort Collins, CO 80523, United States of America
| | - Dongmei Zhang
- Department of Chemistry, Colorado State University Fort Collins, CO 80523, United States of America
| | - B George Barisas
- Cell and Molecular Biology Program, Colorado State University Fort Collins, CO 80523, United States of America; Department of Chemistry, Colorado State University Fort Collins, CO 80523, United States of America
| | - Deborah A Roess
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO 80523, United States of America
| | - Debbie C Crans
- Cell and Molecular Biology Program, Colorado State University Fort Collins, CO 80523, United States of America; Department of Chemistry, Colorado State University Fort Collins, CO 80523, United States of America.
| |
Collapse
|
10
|
Structural insights into the AapA1 toxin of Helicobacter pylori. Biochim Biophys Acta Gen Subj 2019; 1864:129423. [PMID: 31476357 DOI: 10.1016/j.bbagen.2019.129423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously reported the identification of the aapA1/IsoA1 locus as part of a new family of toxin-antitoxin (TA) systems in the human pathogen Helicobacter pylori. AapA1 belongs to type I TA bacterial toxins, and both its mechanism of action towards the membrane and toxicity features are still unclear. METHODS The biochemical characterization of the AapA1 toxic peptide was carried out using plasmid-borne expression and mutational approaches to follow its toxicity and localization. Biophysical properties of the AapA1 interaction with lipid membranes were studied by solution and solid-state NMR spectroscopy, plasmon waveguide resonance (PWR) and molecular modeling. RESULTS We show that despite a low hydrophobic index, this toxin has a nanomolar affinity to the prokaryotic membrane. NMR spectroscopy reveals that the AapA1 toxin is structurally organized into three distinct domains: a positively charged disordered N-terminal domain (D), a single α-helix (H), and a basic C-terminal domain (R). The R domain interacts and destabilizes the membrane, while the H domain adopts a transmembrane conformation. These results were confirmed by alanine scanning of the minimal sequence required for toxicity. CONCLUSION Our results have shown that specific amino acid residues along the H domain, as well as the R domain, are essential for the toxicity of the AapA1 toxin. GENERAL SIGNIFICANCE Untangling and understanding the mechanism of action of small membrane-targeting toxins are difficult, but nevertheless contributes to a promising search and development of new antimicrobial drugs.
Collapse
|
11
|
Macikova L, Sinica V, Kadkova A, Villette S, Ciaccafava A, Faherty J, Lecomte S, Alves ID, Vlachova V. Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS J 2019; 286:3664-3683. [PMID: 31116904 DOI: 10.1111/febs.14931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP2 -interaction site (Y1006-Q1031) is involved in TRPA1 regulation. The interactions of two specific peptides (L992-N1008 and T1003-P1034) with model lipid membranes were characterized by biophysical approaches to obtain information about affinity, peptide secondary structure, and peptide effect in the lipid organization. The results indicate that the two peptides interact with lipid membranes only if PIP2 is present and their affinities depend on the presence of calcium. Using whole-cell electrophysiology, we demonstrate that mutation at F1020 produced channels with faster activation kinetics and with a rightward shifted voltage-dependent activation curve by altering the allosteric constant that couples voltage sensing to pore opening. We assert that the presence of PIP2 is essential for the interaction of the two peptide sequences with the lipid membrane. The putative phosphoinositide-interacting domain comprising the highly conserved F1020 contributes to the stabilization of the TRPA1 channel gate.
Collapse
Affiliation(s)
- Lucie Macikova
- CBMN-UMR 5248 CNRS, IPB, University of Bordeaux, Pessac, France.,Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna Kadkova
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | - Sophie Lecomte
- CBMN-UMR 5248 CNRS, IPB, University of Bordeaux, Pessac, France
| | - Isabel D Alves
- CBMN-UMR 5248 CNRS, IPB, University of Bordeaux, Pessac, France
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|