1
|
Cheng T, Xie Z, Wang T, Jiang Y, Guo X, Liu X, Wen Y, Yang H, Wu Y. Ultrasensitive SERS Detection of Five β-Blockers Achieved Using Chemometrics with a Two-Dimensional Substrate Formed by Large-Sized Ag@SiO 2 Nanoparticles. Anal Chem 2024; 96:16379-16386. [PMID: 39360675 DOI: 10.1021/acs.analchem.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (β-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five β-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five β-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five β-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.
Collapse
Affiliation(s)
- Tao Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ziyue Xie
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Tianrun Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Yu W, Sun W, Guo K, Yang Y. Surface-enhanced fluorescence for lipopolysaccharide analysis based on shell-isolated nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123065. [PMID: 37364412 DOI: 10.1016/j.saa.2023.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Lipopolysaccharide (LPS) as the component of cell membrane on gram-negative bacteria played a central role on inflammatory inducer to stimulate a multi-system host response. Herein, a surface-enhanced fluorescent (SEF) sensor was developed for LPS analysis based on shell-isolated nanoparticles (SHINs). The fluorescent signal of CdTe quantum dots (QDs) was amplified by silica shell-coated Au nanoparticles (Au NPs). The 3D finite-difference time-domain (3D-FDTD) simulation revealed that this enhancement was due to local electric field amplification. This method has a linear detection range of 0.1-20 μg/mL and a detection limit of 64 ng/mL for LPS. Furthermore, the developed method was successfully applied for LPS analysis in milk and human serum sample. The results indicated that the as-prepared sensor has significant potential for selective detection of LPS in biomedical diagnosis and food safety.
Collapse
Affiliation(s)
- Weidao Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen Sun
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ketong Guo
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Metal-Organic frameworks encapsulated Ag Nanoparticle-Nanoclusters with enhanced luminescence for simultaneous detection and removal of Chromium(VI). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Lin LH, Wang JY, You CY, Qiu LH, Lin JS, Zhang FL, Yang ZL, Zhang YJ, Chen X, Li JF. Shell-Isolated Nanoparticle-Enhanced Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203513. [PMID: 36008122 DOI: 10.1002/smll.202203513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Enhanced electrochemiluminescence (ECL) aims to promote higher sensitivity and obtain better detection limit. The core-shell nanostructures, owing to unique surface plasmon resonance (SPR) enabling distance-dependent strong localized electromagnetic field, have attracted rising attention in enhanced ECL research and application. However, the present structures usually with porous shell involve electrocatalytic activity from the metal core and adsorption effect from the shell, which interfere with practical SPR enhancement contribution to ECL signal. Herein, to exclude the interference and unveil exact SPR-enhanced effect, shell-isolated nanoparticles (SHINs) whose shell gets thicker and becomes pinhole-free are developed by modifying pH value and particles concentration. Furthermore, allowing for the distribution of hotspots and stronger enhancement, excitation intensity and ECL reaction layer thickness are mainly investigated, and several types of SHINs-enhanced ECL platforms are prepared to fabricate distinct hotspot distribution via electrostatic attraction (submonolayer) and a layer-by-layer deposition method (monolayer). Consequently, the strongest enhancement up to ≈250-fold is achieved by monolayer SHINs with 10 nm shell, and the platform is applied in a "turn-off" mode sensing for dopamine. The platform provides new guidelines to shell preparation, interface engineering and hotspots fabrication for superior ECL enhancement and analytical application with high performance.
Collapse
Affiliation(s)
- Long-Hui Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jing-Yu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Chao-Yu You
- Intelligent Wearable Engineering Research Center of Qingdao, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266003, China
| | - Ling-Hang Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Xi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
5
|
A simple strategy to enhance the luminescence of metal nanoclusters and its application for turn-on detection of 2-thiouracil and hyaluronidase. Talanta 2022; 236:122876. [PMID: 34635256 DOI: 10.1016/j.talanta.2021.122876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Metal nanoclusters (NCs) as promising nanomaterials for sensing applications have attracted significant attention because of their unique photoluminescence properties. However, the quantum yields of metal NCs are still relatively low when compared to conventional quantum dots and organic dyes, posing a major obstacle to their assay application. It is challenging but important to pursue a way to improve the luminescence of metal NCs. In this work, we developed a novel strategy to enhance the luminescence of silver nanoclusters (Ag NCs) based on the binding with 6-aza-2-thiothymine (ATT) via Au3+ bridging. We studied the possible mechanism of this binding-induced luminescence enhancement and attributed it to the ligands rigidifying. Since 2-thiouracil (2-TU), a common anticancer, antithyroid, and antiviral agent, featured a similar molecular structure of ATT, this luminescence enhancement strategy can be designed to sensitive and selective turn-on detect 2-TU. As far as we know, this is the first report for the fluorescent turn-on detect 2-TU. Benefiting from the good performance of this method and the advantages of fluorescence assay, intracellular imaging of 2-TU, which has yet to be achieved based on currently developed analytical methods for 2-TU, was carried out via our approach. Moreover, to further expand the sensing application of the developed luminescence enhancement method, we constructed a universal detection platform. Taking hyaluronidase as a target, the feasibility of the detection platform was confirmed. The discoveries in this study offer a simple route to improve the optical properties of NCs and design their sensing applications.
Collapse
|
6
|
Raza T, Qu L, Khokhar WA, Andrews B, Ali A, Tian M. Progress of Wearable and Flexible Electrochemical Biosensors With the Aid of Conductive Nanomaterials. Front Bioeng Biotechnol 2021; 9:761020. [PMID: 34881233 PMCID: PMC8645837 DOI: 10.3389/fbioe.2021.761020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Conductive nanomaterials have recently gained a lot of interest due to their excellent physical, chemical, and electrical properties, as well as their numerous nanoscale morphologies, which enable them to be fabricated into a wide range of modern chemical and biological sensors. This study focuses mainly on current applications based on conductive nanostructured materials. They are the key elements in preparing wearable electrochemical Biosensors, including electrochemical immunosensors and DNA biosensors. Conductive nanomaterials such as carbon (Carbon Nanotubes, Graphene), metals and conductive polymers, which provide a large effective surface area, fast electron transfer rate and high electrical conductivity, are summarized in detail. Conductive polymer nanocomposites in combination with carbon and metal nanoparticles have also been addressed to increase sensor performance. In conclusion, a section on current challenges and opportunities in this growing field is forecasted at the end.
Collapse
Affiliation(s)
- Tahir Raza
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | | | - Boakye Andrews
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | | | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhang YJ, Radjenovic PM, Zhou XS, Zhang H, Yao JL, Li JF. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005900. [PMID: 33811422 DOI: 10.1002/adma.202005900] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/24/2021] [Indexed: 05/22/2023]
Abstract
Plasmonic core-shell nanostructures have attracted considerable attention in the scientific community recently due to their highly tunable optical properties. Plasmon-enhanced spectroscopies are one of the main applications of plasmonic nanomaterials. When excited by an incident laser of suitable wavelength, strong and highly localized electromagnetic (EM) fields are generated around plasmonic nanomaterials, which can significantly boost excitation and/or radiation processes that amplify Raman, fluorescence, or nonlinear signals and improve spectroscopic sensitivity. Herein, recent developments in plasmon-enhanced spectroscopies utilizing core-shell nanostructures are reviewed, including shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), plasmon-enhanced fluorescence spectroscopy, and plasmon-enhanced nonlinear spectroscopy.
Collapse
Affiliation(s)
- Yue-Jiao Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Petar M Radjenovic
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hua Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Li D, Chen H, Gao X, Mei X, Yang L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens 2021; 6:613-627. [PMID: 33660987 DOI: 10.1021/acssensors.0c02322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses have caused significant damage to the world. Effective detection is required to relieve the impact of viral infections. A biomolecule can be used as a template such as deoxyribonucleic acid (DNA), peptide, or protein, for the growth of silver nanoclusters (AgNCs) and for recognizing a virus. Both the AgNCs and the recognition elements are tunable, which is promising for the analysis of new viruses. Considering that a new virus such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently requires a facile sensing strategy, various virus detection strategies based on AgNCs including fluorescence enhancement, color change, quenching, and recovery are summarized. Particular emphasis is placed on the molecular analysis of viruses using DNA stabilized AgNCs (DNA-AgNCs), which detect the virus's genetic material. The more widespread applications of AgNCs for general virus detection are also discussed. Further development of these technologies may address the challenge for facile detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hui Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xianhui Gao
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Guselnikova O, Váňa J, Phuong LT, Panov I, Rulíšek L, Trelin A, Postnikov P, Švorčík V, Andris E, Lyutakov O. Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate. Chem Sci 2021; 12:5591-5598. [PMID: 34163774 PMCID: PMC8179579 DOI: 10.1039/d0sc05898j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Linh Trinh Phuong
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Illia Panov
- Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals, Czech Academy of Sciences Rozvojová 1/135 165 02 Prague Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Andrii Trelin
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| |
Collapse
|