1
|
Zhang X, Ni L, He A, Yang L, Noda I, Ozaki Y, Guo R, Xu Y. A new apparatus and the relevant method to retrieve IR spectra of solutes from the corresponding aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122598. [PMID: 36996520 DOI: 10.1016/j.saa.2023.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Ran Guo
- PerkinElmer Inc., Jiuxianqiao Road, 14, Chaoyang District, Beijing 100015, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Zhang X, Li T, He A, Yang L, Noda I, Ozaki Y, Xu Y. Comprehensive modified approaches to reducing the interference of moisture from an FTIR spectrum and the corresponding second derivative spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122004. [PMID: 36327803 DOI: 10.1016/j.saa.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
We proposed a modified and improved approach to removing the interference of moisture from an IR spectrum and the corresponding second derivative spectrum. The temperature fluctuation in the air of the optical path and baseline-drift lead to the small but persistent presence of the interference of moisture. The problem has been successfully addressed by adopting a double-matching strategy. Additionally, two-dimensional correlationspectra (2D-COS) are generated using the second derivative or third derivative spectrum of the negative base 10 logarithms of the single-beam spectra, thereby removing the linear slope or quadratic portion of baseline-drift. Using the newly adopted approach, the residual interferences of moisture are attenuated. We applied the new approach to the IR spectra and the second derivative spectra of neat hexadecanol and biaxially oriented polypropylene (BOPP) film, and some promising preliminary results are obtained. In hexadecanol, two highly overlapping peaks at 1464 and 1463 cm-1 are revealed. In BOPP, the envelope at 1458 cm-1 is found to be composed of a number of sub-peaks.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Li
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Photodegradation behavior of polyethylene terephthalate analyzed by MALDI-TOFMS and ATR-FTIR microscopic analysis in combination with two-trace two-dimensional (2T2D) correlation mapping. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Ren X, Breadmore MC, Maya F. Magnetism-Assisted Density Gradient Separation of Microplastics. Anal Chem 2022; 94:17947-17955. [PMID: 36469617 DOI: 10.1021/acs.analchem.2c04001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A versatile method for the efficient separation of different types of microplastics from particle mixtures is presented. Magnetism-assisted density gradient separation (Mag-DG-Sep) relies on a bespoke separation cell connected to a gradient pump and located between two like-pole-facing neodymium magnets. In Mag-DG-Sep, particle mixtures initially sunk in water are subjected to a gradient of increasing concentration of MnCl2, enabling the sequential suspension and collection of particles with different densities. The suspension process is assisted by the paramagnetism of the MnCl2 solution placed between the two magnets, which contributes to focusing the ascending particles from the bottom of the separation cell to the outlet, thus enhancing the resolution of the separation process. To demonstrate the concept, a mixture of polyethylene (PE) polymer particles with a similar size range (180-212 μm) but different densities (ca. 0.98, 1.025, 1.08, and 1.35 g cm-3) was selectively separated in a single Mag-DG-Sep run. These particles were also efficiently separated when mixed with other types of particles, such as glass or soil. A generic linear MnCl2 gradient can be directly applied for sample screening covering a broad range of densities (0.98-2.20 g cm-3), while steps can be introduced in the gradient, increasing the separation resolution of particles with close densities (1.025-1.08 g cm-3). As a proof-of-concept application, Mag-DG-Sep facilitated sample preparation of microplastics present in a soil sample prior to their examination by attenuated total reflection Fourier-transform infrared spectroscopy.
Collapse
Affiliation(s)
- Xinpeng Ren
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania7001, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania7001, Australia
| |
Collapse
|
5
|
Preeti, Mishra S, Chakinala N, Chakinala AG, Surolia PK. Bimetallic Bi/Zn decorated hydrothermally synthesized TiO2 for efficient photocatalytic degradation of nitrobenzene. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Shinzawa H, Itasaka H. Glass fiber (GF)/polypropylene (PP) composite studied by Raman disrelation mapping. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121056. [PMID: 35219271 DOI: 10.1016/j.saa.2022.121056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Disrelation mapping was applied to Raman imaging data for the first time to investigate submolecular-level variations that occurred at the interface between glass fiber (GF) and polypropylene (PP). Disrelation maps constructed with Raman spectra provided spatial as well as spectral information, which are not readily accessible from hypercubic data. For example, patterns that appeared in the disrelation maps showed the predominant development of a long helix band (1002 cm-1) at the interface between the GF and PP, rather than a short helix band (974 cm-1). The development of the disrelation intensity was observed inside the sample as well as at the surface. These results clearly reveal that the GF or compatibilizer works intrinsically as a nucleating agent to induce additional development of the crystalline structure of the PP, which eventually makes the polymer system harder but more brittle.
Collapse
Affiliation(s)
- Hideyuki Shinzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Innovative Functional Materials Research Institute, AIST, Nagoya, Japan.
| | - Hiroki Itasaka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Innovative Functional Materials Research Institute, AIST, Nagoya, Japan
| |
Collapse
|
7
|
Li K, Zhou F, He A, Guo R, Yang L, Zhao Y, Xu Y, Noda I, Ozaki Y. Random swapping, an effective and efficient way to boost the intensities of cross peaks in a 2D asynchronous spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120968. [PMID: 35152094 DOI: 10.1016/j.saa.2022.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Analysis of mixture via chromatographic-spectroscopic and analogous experiments is a common task in analytical chemistry. A 2D/nD asynchronous spectrum is effective in retrieving spectra of pure substances even if different components cannot be separated. However, noise in the 2D/nD asynchronous spectrum becomes a bottleneck in the analysis. Finding a suitable sequence of the 1D spectra used in constructing the 2D/nD asynchronous spectrum is helpful to improve the signal-to-noise level. A 2D/nD asynchronous spectrum is often produced via a large number of 1D spectra. The resultant colossal number of the possible sequences makes stochastic search the only possible way to find a suitable sequence. Random changing (RC) and random swapping (RS) are two ways to obtain a new sequence. We found that the possibility of finding a better sequence via an RS is significantly higher than that via an RC in the advanced stage of stochastic searching. This is the reason why the performance of RS is superior to that of RC in two model systems where 2D asynchronous spectra are used. We applied the RS approach on the analysis of water/isopropanol mixtures, and satisfactory sequences are acquired with affordable computational cost. Thus, the RS approach brings about an opportunity increase the signal-to-noise level of a 2D asynchronous spectrum in the analysis of the bilinear data from complex mixed samples.
Collapse
Affiliation(s)
- Kaili Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Beijing CKC, PerkinElmer Inc., Beijing 100015, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Changshu Hi-Tech Industrial Development Zone, Suzhou 215500, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1337, Japan
| |
Collapse
|
8
|
Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. Molecular-scale deformation of glass-fiber-reinforced polypropylene probed by rheo-optical Fourier transform infrared imaging combined with a two-trace two-dimensional correlation technique. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Zhang X, He A, Guo R, Zhao Y, Yang L, Morita S, Xu Y, Noda I, Ozaki Y. A new approach to removing interference of moisture from FTIR spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120373. [PMID: 34547685 DOI: 10.1016/j.saa.2021.120373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
An approach is developed to remove the interference of moisture from FTIR spectra. The interference arises from two aspects: the fluctuation on the temperature of the HeNe laser and the fluctuation on the transient concentration of moisture in the light - path of an FTIR spectrometer. The temperature fluctuation on the HeNe laser produces a systematic spectral shift between single-beam sample and background spectra, which often makes spectral subtraction method invalid in removing the interference of moisture. Herein, the Carbo similarity metric (the CAB value) is used to reflect the subtle spectral shift. A database of single-beam background spectra is established based on the concept of big-data and the pigeon-hole theory. The spectral shift is corrected by selecting suitable single-beam background spectra from the database to match with the given single-beam sample spectrum according to the CAB value. The interference caused by the fluctuation of the transient concentration of moisture is removed using a comprehensive 2D-COS method. We apply the approach on two polymeric samples to retrieve high-quality spectra and reliable second derivative spectra without the interference of moisture. The present work provides a new opportunity of obtaining the reliable second derivative spectra in the spectral region masked by moisture.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Beijing CKC, PerkinElmer Inc., Beijing 100015, PR China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Suzhou, Jiangsu 215500, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
10
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
11
|
Shinzawa H, Sugahara A, Hagihara H, Mizukado J, Watanabe R. Fourier Transform Infrared Imaging Analysis of Interactions Between Polypropylene Grafted with Maleic Anhydride and Silica Spheres Using Two-Trace Two-Dimensional Correlation Mapping. APPLIED SPECTROSCOPY 2021; 75:947-956. [PMID: 33783240 DOI: 10.1177/00037028211007872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A technique for analyzing infrared imaging data based on two-trace two-dimensional (2T2D) correlation analysis is presented to extract pertinent information underlying spectroscopic imaging data. In 2T2D correlation mapping, each spectrum in hyperspectral data is individually compared with a reference spectrum to generate 2T2D asynchronous correlation intensity at the x- and y-coordinates on a 2T2D correlation map. Asynchronous correlation intensity develops only when the signal contribution from a certain species becomes even more significant in the sample spectrum compared with the reference spectrum. This feature can be advantageously utilized to examine molecular interaction or an intermediate form of the component present in a system of interest. 2T2D correlation mapping is examined using Fourier transform infrared imaging data of polymer composites based on polypropylene grafted with maleic anhydride melt-mixed with silica spheres. Infrared images derived by using conventional visualization based on a single wavenumber (i.e., 1713 cm-1) are dominated with the overwhelming infrared absorbance induced by the normal maleic anhydride species, making the identification of subtle but pertinent changes in the composite system difficult. A 2T2D correlation map derived from the maleic anhydride/silica spheres composite developed a significant asynchronous correlation intensity between the infrared bands at 1695 and 1713 cm-1 around a specific region on the map where the maleic anhydride and silica spheres coexist. On the other hand, such a correlation pattern becomes less acute when the silica spheres is modified with the octadecyldimethyl group to prevent the hydrogen bonding with the maleic anhydride. It thus revealed that the silanol groups on the surface of the silica spheres substantially interact with the maleic anhydride via the development of the hydrogen bonding.
Collapse
Affiliation(s)
- Hideyuki Shinzawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Aki Sugahara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideaki Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Junji Mizukado
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ryota Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
12
|
Lu H, Shinzawa H, Kazarian SG. Intermolecular Interactions in the Polymer Blends Under High-Pressure CO 2 Studied Using Two-Dimensional Correlation Analysis and Two-Dimensional Disrelation Mapping. APPLIED SPECTROSCOPY 2021; 75:250-258. [PMID: 33231478 PMCID: PMC7961738 DOI: 10.1177/0003702820978473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposing polymers to high-pressure and supercritical CO2 is a useful approach in polymer processing. Consequently, the mechanisms of polymer-polymer interaction under such conditions are worthy of further investigation. Two-dimensional correlation analysis and two-dimensional disrelation mapping were applied to datasets of polycaprolactone -poly(lactic acid) blend with or without high-pressure CO2 obtained using in situ attenuated total reflection Fourier transform spectroscopic imaging. The relatively weak dipole-dipole intermolecular interactions between polymer molecules were visualized through the disrelation maps for the first time. Because of the specially designed polymer interface, the interactions between the same type of polymer molecules and different types of polymer molecules were differentiated. Under exposure to high-pressure CO2, all three types of interactions: interaction between polycaprolactone molecules and poly(lactic acid) molecules, interaction between polycaprolactone molecules and interaction between poly(lactic acid) molecules become weaker than those in the polymer interface without high-pressure CO2. The resulting increase in the Flory interaction parameter is the main cause of phase separation in the PCL-PLA blend under high-pressure CO2. The findings from this study will be of benefit for polymer processing with high-pressure and supercritical CO2.
Collapse
Affiliation(s)
- Huiqiang Lu
- Department of Chemical Engineering, Imperial College London, SW7 3AZ, London, UK
| | - Hideyuki Shinzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sergei G. Kazarian
- Department of Chemical Engineering, Imperial College London, SW7 3AZ, London, UK
- Sergei G. Kazarian, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
13
|
Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. In Situ Fourier Transform Infrared Spectroscopic Imaging for Elucidating Variations in Chemical Structures of Polymer Composites at the Matrix–Filler Interface during Reactive Processing. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryota Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Aki Sugahara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hideaki Hagihara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Junji Mizukado
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hideyuki Shinzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|