1
|
Hu Y, Cao X, Guo Y, Zheng X, Li D, Chen SK, Chen G, You J. An aggregation-induced emission fluorogen/DNA probe carrying an endosome escaping pass for tracking reduced thiol compounds in cells. Anal Bioanal Chem 2020; 412:7811-7817. [PMID: 32870350 DOI: 10.1007/s00216-020-02909-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
The fluorescent nanoprobes for reduced thiol compounds (represented by glutathione, GSH) are constructed based on the aggregation-induced emission (AIE) luminescence mechanism and endosome escape technology. First, a DNA sequence was designed with the decoration of biotin at the 5'-end, disulfide bound in the internal portion, and amino at the 3'-end. The aptamer of the MCF-7 cell was also one of the most important structures in our DNA sequence for the selectivity of MCF-7 cells. We modified streptavidin-modified magnetic beads (MB) with biotin-modified influenza virus hemagglutinin peptide (HA) and biotin-DNA-amino to form MB/DNA/HA. Carboxyl-modified tetraphenylethylene (TPE), an iconic AIE fluorogen, was bonded with amino-modified DNA by covalent interactions (TPE/DNA). Then, the TPE molecule was attached on the outer layer of MB via biotin-modified TPE/DNA to form MB/DNA/HA/TPE. Compared with traditional AIE/biomolecule conjugates, the nanoprobe had an enhanced endosome escape function, due to the assembly of HA. This construction made the intracellular fluorescence response more accurate. In the presence of reduced thiol compounds (take GSH, for example), the disulfide bond on the DNA was reduced by thiol-disulfide exchange reactions and the TPE molecule was released into the solution. The shedding TPE molecule was more hydrophobic than TPE/DNA and the conversion of TPE/DNA to shedding TPE could lead to the aggregation of the TPE fluorogen. Thus, its fluorescence was enhanced. Under the optimized condition, the fluorescence intensity increased with the increase in concentration of GSH' ranging from 1.0 × 10-9 M to 1.0 × 10-5 M' and the detection limit was 1.0 × 10-9 M. The relative standard deviation (RSD) was calculated to be 3.6%. The recovery in cell homogenate was from 94.5 to 102.7%. The nanoprobe provided a way for the detection of reduced thiol compounds in MCF-7 cells. We envision that, in the near future, our strategy of DNA-instructed AIE could be widely applied for biosensing and bioimaging in vitro and even in vivo with dramatically enhanced sensitivity. Graphical Abstract.
Collapse
Affiliation(s)
- Yinhua Hu
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xiuping Cao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 160 Pujian Road, Pudong, Jinan, 250353, China.
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaofei Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Dongjiao Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Si-Kai Chen
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|