1
|
Liu TH, Okuno M. Hyper-Raman spectroscopy of non-proteinogenic amino acids. ANAL SCI 2024:10.1007/s44211-024-00698-1. [PMID: 39671139 DOI: 10.1007/s44211-024-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
We report 532-nm and 1064-nm excited hyper-Raman (HR) spectra of representative non-proteinogenic amino acids, including α-, β-, and γ-amino acids. Different from the common 20 proteinogenic amino acids, natural non-proteinogenic amino acids cannot be incorporated into proteins during translation, while they are indispensable as intermediates in many processes like biosynthesis and neurotransmitters. In 532-nm excited HR spectra, the COO─ symmetric stretching bands are commonly intense, and the NH3+ bands are clearly observable. In addition, based on the reported IR and Raman study, we found that some HR bands are IR-active but Raman-inactive. In contrast, HR signals with the 1064-nm excitation are much weaker than the 532-nm excitation. Nevertheless, we observed the COO─ scissoring band unexpectedly, much stronger than other bands with the 1064-nm excitation. Our results suggest that the electronic resonance effect plays a role in enabling us to detect HR signals in the UV region readily. We expect that this study provides a supplementary reference for HR spectroscopy of natural amino acids.
Collapse
Affiliation(s)
- Tsung-Han Liu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Su Z, Xing Y, Xiao Y, Guo J, Wang C, Wang F, Xu Z, Wu W, Gu Y. Decellularized, Heparinized Small-Caliber Tissue-Engineered "Biological Tubes" for Allograft Vascular Grafts. ACS Biomater Sci Eng 2024; 10:5154-5167. [PMID: 39079153 DOI: 10.1021/acsbiomaterials.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
There remains a lack of small-caliber tissue-engineered blood vessels (TEBVs) with wide clinical use. Biotubes were developed by electrospinning and in-body tissue architecture (iBTA) technology to prepare small-caliber TEBVs with promising applications. Different ratios of hybrid fibers of poly(l-lactic-co-ε-caprolactone) (PLCL) and polyurethane (PU) were obtained by electrospinning, and the electrospun tubes were then implanted subcutaneously in the abdominal area of a rabbit (as an in vivo bioreactor). The biotubes were harvested after 4 weeks. They were then decellularized and cross-linked with heparin. PLCL/PU electrospun vascular tubes, decellularized biotubes (D-biotubes), and heparinized combined decellularized biotubes (H + D-biotubes) underwent carotid artery allograft transplantation in a rabbit model. Vascular ultrasound follow-up and histological observation revealed that the biotubes developed based on electrospinning and iBTA technology, after decellularization and heparinization cross-linking, showed a better patency rate, adequate mechanical properties, and remodeling ability in the rabbit model. IBTA technology caused a higher patency, and the heparinization cross-linking process gave the biotubes stronger mechanical properties.
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100086 Beijing, China
| | - Julong Guo
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Cong Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Fei Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Zeqin Xu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Weiwei Wu
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| |
Collapse
|
3
|
Lioi M, Tengattini S, Gotti R, Bagatin F, Galliani S, Massolini G, Daly S, Temporini C. Chromatographic separation by RPLC-ESI-MS of all hydroxyproline isomers for the characterization of collagens from different sources. J Chromatogr A 2024; 1720:464771. [PMID: 38447433 DOI: 10.1016/j.chroma.2024.464771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
During collagen biosynthesis, proline is post-translationally converted to hydroxyproline by specific enzymes. This amino acid, unique to collagen, plays a crucial role in stabilizing the collagen triple helix structure and could serve as an important biomarker for collagen content and quality analysis. Hydroxyproline has four isomers, depending on whether proline is hydroxylated at position 4 or 3 and on whether the cis- or trans- conformation is formed. Moreover, as extensive hydrolysis of collagen is required for its amino acid analysis, epimerization may also occur, although to a lesser extent, giving a total of eight possible isomers. The aim of the present study was to develop a reversed-phase high-performance liquid chromatography-UV-mass spectrometry (RPLC-UV-MS) method for the separation and quantification of all eight hydroxyproline isomers. After the chiral derivatization of the hydroxyproline isomers with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA), to enable their UV detection, the derivatized diastereoisomers were separated by testing different C18 column technologies and morphologies and optimizing operative conditions such as the mobile phase composition (solvent, additives), elution mode, flow rate and temperature. Baseline resolution of all eight isomers was achieved on a HALO® ES-C18 reversed-phase column (150×1.5 mm, 2.7 μm, 160 Å) using isocratic elution and MS-compatible mobile phase. The optimized method was validated for the quantification of hydroxyproline isomers and then applied to different collagen hydrolysates to gain insight and a deeper understanding of hydroxyproline abundances in different species (human, chicken) and sources (native, recombinant).
Collapse
Affiliation(s)
- Martina Lioi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Francesca Bagatin
- Gnosis by Lesaffre, Via Lavoratori Autobianchi 1, Desio 20832, Italy
| | - Stefano Galliani
- Gnosis by Lesaffre, Via Lavoratori Autobianchi 1, Desio 20832, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Simona Daly
- Gnosis by Lesaffre, Via Lavoratori Autobianchi 1, Desio 20832, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy.
| |
Collapse
|
4
|
Li M, Wen X, Wang K, Liu Z, Ni Y. Maillard induced glycation of β-casein for enhanced stability of the self-assembly micelles against acidic and calcium environment. Food Chem 2022; 387:132914. [PMID: 35421650 DOI: 10.1016/j.foodchem.2022.132914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
Abstract
Bovine β-casein (β-CN) has attracted increasingly interest as biocompatible nanocarrier for hydrophobic flavonoid due to its self-assembly ability to form micelles. This paper reported Maillard induced glycation reaction of β-CN using dextran in order to improve stability of naringenin-loaded β-CN micelles under acidic and high calcium environments. Our results showed that solubility of β-CN-graft-dextran was remarkable increased at acidic pH and the conjugation with 20 kDa dextran had the highest level of graft degree. Glycation restrained β-CN from aggregating around pH 5.0 where was close to the isoelectric point, forming spherical micelles with irregular and rough surfaces, which were significantly larger than the micelles at pH 7.0. β-CN-graft-dextran also overcame destabilization of the micelles induced by excess calcium and had no impact on the chelating ability of calcium. These findings appeared to be promising for future applications of modified β-CN-graft-dextran based on Maillard reaction as fairly stable nanocarrier under extreme condition.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; National Academy of Agriculture Green Development, China Agricultural University, 100193 Beijing, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17 Qinghua East Road, Beijing 100083, China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17 Qinghua East Road, Beijing 100083, China
| | - Kunli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17 Qinghua East Road, Beijing 100083, China
| | - Zihao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17 Qinghua East Road, Beijing 100083, China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17 Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
5
|
Kawecki F, Gluais M, Claverol S, Dusserre N, McAllister T, L'Heureux N. Inter-donor variability of extracellular matrix production in long-term cultures of human fibroblasts. Biomater Sci 2022; 10:3935-3950. [PMID: 35700514 PMCID: PMC9275472 DOI: 10.1039/d1bm01933c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several tissue engineering approaches are based on the ability of mesenchymal cells to endogenously synthesize an extracellular matrix (ECM) in vitro, which can be seen as a form of biomaterial. Accordingly, the inter-donor variability of cell-assembled extracellular matrix (CAM) production is a key parameter to understand in order to progress towards clinical applications, especially for autologous strategies. In this study, CAMs were produced, under good manufacturing process conditions, from skin fibroblasts of 21 patients as part of a clinical trial to evaluate a tissue-engineered vascular graft. The inter-donor variability of CAM strength, thickness, hydroxyproline, and glycosaminoglycan was substantial (coefficient of variability of 33%, 19%, 24%, and 19%, respectively), but a significant correlation was observed between all four properties (Pearson r: 0.43 to 0.70; p-value ≤ 0.05). A CAM matrisome analysis, performed by mass spectrometry, revealed the presence of 70 ECM-related proteins. Our study shows that the relative abundance of 16 proteins (15 non-collagenous) correlated with CAM thickness. These proteins also correlated with CAM hydroxyproline content, as well as 21 other proteins that included fibrillar collagens and non-collagenous proteins. However, data demonstrated that only the relative abundance of type I collagen subunit alpha-1 was correlated to CAM strength. This study is the most extensive evaluation of CAM inter-donor variability to date and will help tissue engineers working with this type of biomaterial to design strategies that take into account this variability, especially for autologous tissue manufacturing. Several tissue engineering approaches are based on the ability of mesenchymal cells to endogenously synthesize an extracellular matrix (ECM) in vitro, which can be seen as a form of biomaterial.![]()
Collapse
Affiliation(s)
- Fabien Kawecki
- Univ. Bordeaux, Inserm, BioTis, UMR1026, F-33000 Bordeaux, France.
| | - Maude Gluais
- Univ. Bordeaux, Inserm, BioTis, UMR1026, F-33000 Bordeaux, France.
| | - Stéphane Claverol
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
6
|
Identification of a highly stable bioactive 3-hydroxyproline-containing tripeptide in human blood after collagen hydrolysate ingestion. NPJ Sci Food 2022; 6:29. [PMID: 35662250 PMCID: PMC9166765 DOI: 10.1038/s41538-022-00144-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
There are increasing reports demonstrating high bioavailability of 4-hydroxyproline (4Hyp)-containing oligopeptides after oral ingestion of collagen hydrolysate and their bioactivity. In contrast, no study investigates the fate of another collagen-specific but minor amino acid, 3Hyp. Here, we identified Gly-3Hyp-4Hyp tripeptide in human blood at high concentrations, comparable to other 4Hyp-containing oligopeptides, after ingesting porcine skin collagen hydrolysate. Additionally, Gly-3Hyp-4Hyp uniquely maintained the maximum concentration until 4 h after the ingestion due to its exceptionally high resistance to peptidase/protease demonstrated by incubation with mouse plasma. In mice, oral administration of collagen hydrolysate prepared from bovine tendon, which contains a higher amount of 3Hyp, further increased blood Gly-3Hyp-4Hyp levels compared to that from bovine skin. Furthermore, Gly-3Hyp-4Hyp showed chemotactic activity on skin fibroblasts and promoted osteoblast differentiation. These results highlight the specific nature of the Gly-3Hyp-4Hyp tripeptide and its potential for health promotion and disease treatment.
Collapse
|
7
|
Taga Y, Tanaka K, Hattori S, Mizuno K. In-depth correlation analysis demonstrates that 4-hydroxyproline at the Yaa position of Gly-Xaa-Yaa repeats dominantly stabilizes collagen triple helix. Matrix Biol Plus 2021; 10:100067. [PMID: 34195597 PMCID: PMC8233474 DOI: 10.1016/j.mbplus.2021.100067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
4Hyp at the Yaa position of Gly-Xaa-Yaa repeats has the highest correlation with collagen denaturation temperature (Td), especially in vertebrates. Significant correlation with Td exists for Gly-Xaa-4Hyp tripeptides, but not for Gly-Pro-Yaa tripeptides. The in-depth correlation analysis demonstrates the dominating role of Yaa position 4Hyp for collagen stability.
There is a general consensus that collagen stability is largely maintained by Pro and its major hydroxylated form, 4-hydroxyproline (4Hyp). However, positional difference in their stabilizing effect at the Xaa or Yaa position of collagenous Gly-Xaa-Yaa sequences has remained inconclusive. Here, we position-specifically evaluated the correlation of imino acid contents to denaturation temperature (Td) of collagen among various vertebrate and invertebrate species, using a recently developed LC–MS methodology. 4Hyp at the Yaa position showed the highest positive correlation with Td, followed by Pro at the Xaa position, which was even further increased by excluding invertebrates. We confirmed that Gly-Pro-4Hyp liberated after bacterial collagenase digestion was highly positively correlated with Td. Furthermore, other tripeptides with Yaa position 4Hyp also had comparable positive correlation, excepting negative correlation of Gly-Gly-4Hyp, while tripeptides with Xaa position Pro did not. These data provide evidence that 4Hyp dominantly contributes to thermal stability of collagen depending on its sequence position, especially in vertebrates.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
8
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|