1
|
Wang Z, Zhuang J, Zhou L, Li H, Ning S, Liao X. Theoretical study on the effect of temperature gradient on contact-free scanning for scanning ion conductance microscopy. Ultramicroscopy 2024; 267:114054. [PMID: 39299030 DOI: 10.1016/j.ultramic.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Scanning ion-conductance microscopy (SICM) is a non-contact, high-resolution, and in-situ scanning probe microscope technique, it can be operated in probing the physical and chemical properties of biological samples such as living cells. Recently, using SICM to study the effects of microenvironment changes such as temperature changes on response of the biological samples has attracted significant attention. However, in this temperature gradient condition, one of the crucial but still unclear issues is the scanning feedback types and safe threshold. In this paper, a theoretical study of effect of the temperature gradient in electrolyte or sample surface on the SICM safe ion-current threshold is conducted using three-dimensional Poisson-Nernst-Planck, Navier-Stokes and energy equations. Two temperature gradient types, sample surface and two types of pipettes with different ratio of inner and outer radii are included, respectively. The results demonstrate that the local temperature of the electrolyte and then sample surface significantly affect the ion flow, shape of the approach curves and thus safe threshold in SICM pipette probe for contact-free scanning. There is a current-increased and decreased phases for approaching the surface with higher temperature and two current-decreased phases for surface with lower temperature. Based on this shape feature of approach curves, the change rate of current is analysis to illustrate the possibility for contact-free scanning of slope object. The results indicate that with the decrease of the normalized tip-surface distance, the coupling effect of large slope angle and local high temperature makes the increase in change rate of ion current not significant and then it challenging to realize contact-free scanning especially for higher surface temperature.
Collapse
Affiliation(s)
- Zhiwu Wang
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lidong Zhou
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hongjuan Li
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Shaohui Ning
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaobo Liao
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Khan AU, Tahir M, Nisa FU, Naseem M, Shahbaz I, Ma Z, Hu Z, Khan AJ, Sabir M, He L. Non-Invasive Multi-Gas Detection Enabled by Cu-CuO/PEDOT Microneedle Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:3623. [PMID: 38894418 PMCID: PMC11175360 DOI: 10.3390/s24113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Metal-oxide-based gas sensors are extensively utilized across various domains due to their cost-effectiveness, facile fabrication, and compatibility with microelectronic technologies. The copper (Cu)-based multifunctional polymer-enhanced sensor (CuMPES) represents a notably tailored design for non-invasive environmental monitoring, particularly for detecting diverse gases with a low concentration. In this investigation, the Cu-CuO/PEDOT nanocomposite was synthesized via a straightforward chemical oxidation and vapor-phase polymerization. Comprehensive characterizations employing X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro Raman elucidated the composition, morphology, and crystal structure of this nanocomposite. Gas-sensing assessments of this CuMPES based on Cu-CuO/PEDOT revealed that the response current of the microneedle-type CuMPES surpassed that of the pure Cu microsensor by nearly threefold. The electrical conductivity and surface reactivity are enhanced by poly (3,4-ethylenedioxythiophene) (PEDOT) polymerized on the CuO-coated surface, resulting in an enhanced sensor performance with an ultra-fast response/recovery of 0.3/0.5 s.
Collapse
Affiliation(s)
- Arif Ullah Khan
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
| | - Muhammad Tahir
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fazal Ul Nisa
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
| | - Mizna Naseem
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
| | - Iqra Shahbaz
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, China;
| | - Zeyu Ma
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
| | - Zilu Hu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
| | - Abdul Jabbar Khan
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Muhammad Sabir
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| | - Liang He
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (A.U.K.); (F.U.N.); (M.N.); (Z.M.); (Z.H.)
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
- Yibin Industrial Technology Research Institute, Yibin R&D Park, Sichuan University, Yibin 644005, China
| |
Collapse
|
3
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Zhang R, Zeng Q, Wang M, Wang L. Catalytic ability characterization of in situ synthesized Pt NP coated SBA-15 within a sub-micropipette. Chem Commun (Camb) 2024; 60:5310-5313. [PMID: 38666500 DOI: 10.1039/d4cc01079e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
An individual catalytic entity of an n-Pt/SBA-15 composite was synthesized in situ within a sub-micropipette nanoreactor, and its size-dependent catalytic ability was evaluated using the resistance pulse signals of O2 nanobubbles, originating from H2O2 decomposition catalyzed by decorated Pt NPs in the composite.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Zhang R, Zeng Q, Liu X, Wang L. Ion transport based structural description for in situ synthesized SBA-15 nanochannels in a sub-micropipette. NANOSCALE 2023; 15:14564-14573. [PMID: 37609921 DOI: 10.1039/d3nr01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Construction of nanoporous arrays can greatly facilitate their development in the fields of sensing, energy conversion, and nanofluidic devices. It is important to characterize the structure and understand the ion transport behaviour of a nanoporous array, especially those prepared by in situ synthesis, which are difficult to be characterized by conventional methods. Herein, an inorganic and non-crystalline mesoporous silica SBA-15 is selected as a template, where a combination (GP-SBA-15) of a sub-micropipette and SBA-15 is constructed by in situ synthesis, and the multichannel array structure of GP-SBA-15 is illustrated by its ion transport properties from current-voltage responses. Experiments of linear scan voltammetry and chronoamperometry show a rapid accumulation and slow redistribution of ions in the surface-charged nanochannels, and the high/low currents originate from the accumulation/depletion of ions in the channels. The finite element simulation is introduced to calculate the effects of surface charge and pore size on ion rectification and ion concentration distribution. In addition, the short straight channels and long bending channels present in GP-SBA-15 are demonstrated by the voltage-independent resistance pulse signals in the translocation of BSA. This study shows that electrochemical means effectively provide insight into ion transport, achieve structural description and reveal the sensing potential of GP-SBA-15.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xuye Liu
- Shantou Institute for Inspection, Shantou 515000, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Ahmed SA, Li W, Xing XL, Pan XT, Xi K, Li CY, Wang K, Xia XH. Ammonia-Induced Anomalous Ion Transport in Covalent Organic Framework Nanochannels. ACS Sens 2023; 8:2179-2185. [PMID: 37245157 DOI: 10.1021/acssensors.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
More anomalous transport behaviors have been observed with the rapid progress in nanofabrication technology and characterization tools. The ions/molecules inside nanochannels can act dramatically different from those in the bulk systems and exhibit novel mechanisms. Here, we have reported the fabrication of a nanodevice, covalent organic frameworks covered theta pipette (CTP), that combine the advantages of theta pipette (TP), nanochannels framework, and field-effect transistors (FETs) for controlling and modulating the anomalous transport. Our results show that ammonia, a weak base, causes a continuous supply of ions inside covalent organic framework (COF) nanochannels, leading to an abnormally high current depending on the ionic/molecular size and the pore size of the nanochannel. Furthermore, CTP can distinguish different concentrations of ammonia and have all of the qualities of a nanosensor.
Collapse
Affiliation(s)
- Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, Guangdong, P. R. China
| | - Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng-Yong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, Guangdong, P. R. China
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Chen X, Kong L, Mehrez JAA, Fan C, Quan W, Zhang Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Yang Z. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. NANO-MICRO LETTERS 2023; 15:149. [PMID: 37286913 PMCID: PMC10247948 DOI: 10.1007/s40820-023-01107-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lingwei Kong
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Fan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
8
|
Zheng X, Liu J, Li M, Hua Y, Liang X, Zhang S, Zhang X, Shao Y. Dual-Nanopipettes for the Detection of Single Nanoparticles and Small Molecules. Anal Chem 2022; 94:17431-17438. [PMID: 36495265 DOI: 10.1021/acs.analchem.2c03344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanopore sensing is blooming due to its label-free and high sensitivity features. As a novel nanopore, a droplet is formed at the orifice of a dual-nanopipette, which allows for the translocation of analytes through the two channels at a relatively low speed and the promotion of signal-to-noise ratio. However, nanopore sensing based on the principle of current blockage requires the pore size to be comparable to that of the single entity, which poses a huge challenge for the direct detection of small molecules. In this work, gold nanoparticles (Au NPs) modified with sulfhydryl poly(ethylene glycol) (PEG-SH) or aptamers were detected successfully. The size difference of Au NPs and the interaction between Au NPs and dual-nanopipettes could be distinguished sensitively. Furthermore, Au NPs modified with designed aptamers will produce different blocking current after capturing the corresponding small molecules (e.g., dopamine and serotonin). Even non-electroactive ions, such as potassium ions, can also be detected, which is difficult to sense based on redox reactions, and further illustrates that the change of surface properties of nanoparticles is responsible for the detection. This work expands the application of nanopipette sensing for Au NPs and provides a universal platform for the small-molecule detection, which has the potential application in biosensing.
Collapse
Affiliation(s)
- Xinhe Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yutong Hua
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Ahmed SA, Xing XL, Liao QB, Li ZQ, Li CY, Xi K, Wang K, Xia XH. Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic Framework Nanochannels. Anal Chem 2022; 94:11224-11229. [PMID: 35917478 DOI: 10.1021/acs.analchem.2c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A crack-free micrometer-sized compact structure of 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde-covalent organic frameworks (TAPB-PDA-COFs) was constructed in situ at the tip of a theta micropipette (TMP). The COF-covered theta micropipette (CTP) then created a stable liquid-gas interface inside COF nanochannels, which was utilized to electrochemically analyze the content and distribution of ammonia gas in the microenvironments. The TMP-based electrochemical ammonia sensor (TEAS) shows a high sensing response, with current increasing linearly from 0 to 50,000 ppm ammonia, owing to the absorption of ammonia gas in the solvent meniscus that connects both barrels of the TEAS. The TEAS also exhibits a short response and recovery time of 5 ± 2 s and 6 ± 2 s, respectively. This response of the ammonia sensor is remarkably stable and repeatable, with a relative standard deviation of 6% for 500 ppm ammonia gas dispensing with humidity control. Due to its fast, reproducible, and stable response to ammonia gas, the TEAS was also utilized as a scanning electrochemical microscopy (SECM) probe for imaging the distribution of ammonia gas in a microspace. This study unlocks new possibilities for using a TMP in designing microscale probes for gas sensing and imaging.
Collapse
Affiliation(s)
- Saud Asif Ahmed
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Qiao-Bo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Cheng-Yong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
10
|
Keshmiri N, Najmi P, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G. Ultrastable Porous Covalent Organic Framework Assembled Carbon Nanotube as a Novel Nanocontainer for Anti-Corrosion Coatings: Experimental and Computational Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19958-19974. [PMID: 35191688 DOI: 10.1021/acsami.1c24185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have been proposed as a wholly organic architecture sharing high crystallinity, porosity, and tuneability. Moreover, they exhibit highly stable structures against harsh chemical environments, including boiling water, strong acids and bases, and oxidation and reduction conditions, making them good candidates for extreme conditions. For the first time, a porous COF structure based on terephthalaldehyde and melamine was synthesized and employed as a novel nanocontainer for hosting corrosion inhibitors to provide a coating with superior active/passive anti-corrosion properties. In this study, the multi-walled carbon nanotube was utilized as a platform for growing COF (CC) to improve the coating's barrier and thermo-mechanical properties. The zinc cations were loaded into the CC structure (called CCZ) as one of the most promising inhibitors for mild steel. The COF-based nanoparticles' characterization was done by Fourier transform infrared, Raman, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller, field emission scanning electron microscopy, and transmission electron microscopy (TEM) techniques. Moreover, the Density functional theory modeling and molecular dynamics simulation quantitatively highlighted the adsorption propensity of the investigated COF structures onto the oxidized CNT-based nanostructures and the interactions of epoxy with these nanostructures. The CCZ nanoparticles (NPs) showed 75% inhibition efficiency in saline solution and 418 ppm zinc ions release after 24 h at acidic pH. The CCZ/EP coating revealed the smart release of inhibitor for 24 h and represented excellent barrier properties after 9 weeks of immersion in saline solution. In terms of mechanical properties, the elastic modulus values derived from the dynamic mechanical thermal analyzer were enhanced by 107 and 137% in CC/EP and CCZ/EP samples compared to the neat epoxy. Furthermore, the yield stress and breakpoint elongation were strengthened by 102 and 63% for the CC/EP sample, respectively. Finally, the highest pull-off adhesion strength in dry (8.53 MPa) and wet (2.7 MPa) conditions, along with the lowest adhesion loss (68.3%), was related to the CCZ/EP sample.
Collapse
Affiliation(s)
- Navid Keshmiri
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 8080, Iran
| | - Parisa Najmi
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 8080, Iran
| | - Mohammad Ramezanzadeh
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 8080, Iran
| | - Bahram Ramezanzadeh
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 8080, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul 39361-79142, Iran
| |
Collapse
|
11
|
Xing XL, Liao QB, Ahmed SA, Wang D, Ren S, Qin X, Ding XL, Xi K, Ji LN, Wang K, Xia XH. Single Molecule DNA Analysis Based on Atomic-Controllable Nanopores in Covalent Organic Frameworks. NANO LETTERS 2022; 22:1358-1365. [PMID: 35080401 DOI: 10.1021/acs.nanolett.1c04633] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We explored the application of two-dimensional covalent organic frameworks (2D COFs) in single molecule DNA analysis. Two ultrathin COF nanosheets were exfoliated with pore sizes of 1.1 nm (COF-1.1) and 1.3 nm (COF-1.3) and covered closely on a quartz nanopipette with an orifice of 20 ± 5 nm. COF nanopores exhibited high size selectivity for fluorescent dyes and DNA molecules. The transport of long (calf thymus DNA) and short (DNA-80) DNA molecules through the COF nanopores was studied. Because of the strong interaction between DNA bases and the organic backbones of COFs, the DNA-80 was transported through the COF-1.1 nanopore at a speed of 270 μs/base, which is the slowest speed ever observed compared with 2D inorganic nanomaterials. This study shows that the COF nanosheet can work individually as a nanopore monomer with controllable pore size like its biological counterparts.
Collapse
Affiliation(s)
- Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiao-Bo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongni Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shibin Ren
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 317000, P. R. China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Liu S, Yang R, Lin X, Su B. Gated thermoelectric sensation by nanochannels grafted with thermally responsive polymers. Chem Commun (Camb) 2020; 56:14291-14294. [PMID: 33130832 DOI: 10.1039/d0cc06734b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report that conical PET nanochannels grafted with thermally responsive polymers can mimic the thermosensation of protein channels in living organisms, showing an adjustable gated potential rather than current response to an ambient temperature stimulus, which is more consistent with real biochannels.
Collapse
Affiliation(s)
- Shanshan Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|